Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Orlando Santos is active.

Publication


Featured researches published by Orlando Santos.


Astrobiology | 2011

The O/OREOS Mission: First Science Data from the Space Environment Survivability of Living Organisms (SESLO) Payload

Wayne L. Nicholson; Antonio J. Ricco; Elwood Agasid; Christopher Beasley; Millan Diaz-Aguado; Pascale Ehrenfreund; Charles Friedericks; Shakib Ghassemieh; Michael Henschke; John W. Hines; Christopher Kitts; Ed Luzzi; Diana Ly; Nghia Mai; Rocco L. Mancinelli; Michael McIntyre; Giovanni Minelli; Michael Neumann; Macarena Parra; Matthew Piccini; R. Mike Rasay; Robert Ricks; Orlando Santos; Aaron Schooley; David Squires; Linda Timucin; Bruce Yost; Anthony Young

We report the first telemetered spaceflight science results from the orbiting Space Environment Survivability of Living Organisms (SESLO) experiment, executed by one of the two 10 cm cube-format payloads aboard the 5.5 kg Organism/Organic Exposure to Orbital Stresses (O/OREOS) free-flying nanosatellite. The O/OREOS spacecraft was launched successfully to a 72° inclination, 650 km Earth orbit on 19 November 2010. This satellite provides access to the radiation environment of space in relatively weak regions of Earths protective magnetosphere as it passes close to the north and south magnetic poles; the total dose rate is about 15 times that in the orbit of the International Space Station. The SESLO experiment measures the long-term survival, germination, and growth responses, including metabolic activity, of Bacillus subtilis spores exposed to the microgravity, ionizing radiation, and heavy-ion bombardment of its high-inclination orbit. Six microwells containing wild-type (168) and six more containing radiation-sensitive mutant (WN1087) strains of dried B. subtilis spores were rehydrated with nutrient medium after 14 days in space to allow the spores to germinate and grow. Similarly, the same distribution of organisms in a different set of microwells was rehydrated with nutrient medium after 97 days in space. The nutrient medium included the redox dye Alamar blue, which changes color in response to cellular metabolic activity. Three-color transmitted intensity measurements of all microwells were telemetered to Earth within days of each of the 48 h growth experiments. We report here on the evaluation and interpretation of these spaceflight data in comparison to delayed-synchronous laboratory ground control experiments.


Astrobiology | 2012

The O/OREOS Mission: First Science Data from the Space Environment Viability of Organics (SEVO) Payload

Andrew Mattioda; Amanda Cook; Pascale Ehrenfreund; Richard C. Quinn; Antonio J. Ricco; David Squires; Nathan Earl Bramall; Kathryn L. Bryson; Julie Diane Chittenden; Giovanni Minelli; Elwood Agasid; Lou Allamandola; Chris Beasley; Roland Burton; Greg Defouw; Millan Diaz-Aguado; Mark Fonda; Charles Friedericks; Christopher Kitts; David Landis; Mike McIntyre; Michael Neumann; Mike Rasay; Robert Ricks; Farid Salama; Orlando Santos; Aaron Schooley; Bruce Yost; Anthony Young

We report the first science results from the Space Environment Viability of Organics (SEVO) payload aboard the Organism/Organic Exposure to Orbital Stresses (O/OREOS) free-flying nanosatellite, which completed its nominal spaceflight mission in May 2011 but continues to acquire data biweekly. The SEVO payload integrates a compact UV-visible-NIR spectrometer, utilizing the Sun as its light source, with a 24-cell sample carousel that houses four classes of vacuum-deposited organic thin films: polycyclic aromatic hydrocarbon (PAH), amino acid, metalloporphyrin, and quinone. The organic films are enclosed in hermetically sealed sample cells that contain one of four astrobiologically relevant microenvironments. Results are reported in this paper for the first 309 days of the mission, during which the samples were exposed for ∼2210 h to direct solar illumination (∼1080 kJ/cm(2) of solar energy over the 124-2600 nm range). Transmission spectra (200-1000 nm) were recorded for each film, at first daily and subsequently every 15 days, along with a solar spectrum and the dark response of the detector array. Results presented here include eight preflight and 16 in-flight spectra of eight SEVO sample cells. Spectra from the PAH thin film in a water-vapor-containing microenvironment indicate measurable change due to solar irradiation in orbit, while three other nominally water-free microenvironments show no appreciable change. The quinone anthrarufin showed high photostability and no significant spectroscopically measurable change in any of the four microenvironments during the same period. The SEVO experiment provides the first in situ real-time analysis of the photostability of organic compounds and biomarkers in orbit.


Langmuir | 2014

Organics Exposure in Orbit (OREOcube): A Next-Generation Space Exposure Platform

Andreas Elsaesser; Richard C. Quinn; Pascale Ehrenfreund; Andrew Mattioda; Antonio J. Ricco; Jason Alonzo; Alex Breitenbach; Yee Kim Chan; A. Fresneau; Farid Salama; Orlando Santos

The OREOcube (ORganics Exposure in Orbit cube) experiment on the International Space Station (ISS) will investigate the effects of solar and cosmic radiation on organic thin films supported on inorganic substrates. Probing the kinetics of structural changes and photomodulated organic-inorganic interactions with real-time in situ UV-visible spectroscopy, this experiment will investigate the role played by solid mineral surfaces in the (photo)chemical evolution, transport, and distribution of organics in our solar system and beyond. In preparation for the OREOcube ISS experiment, we report here laboratory measurements of the photostability of thin films of the 9,10-anthraquinone derivative anthrarufin (51 nm thick) layered upon ultrathin films of iron oxides magnetite and hematite (4 nm thick), as well as supported directly on fused silica. During irradiation with UV and visible light simulating the photon flux and spectral distribution on the surface of Mars, anthrarufin/iron oxide bilayer thin films were exposed to CO2 (800 Pa), the main constituent (and pressure) of the martian atmosphere. The time-dependent photodegradation of anthrarufin thin films revealed the inhibition of degradation by both types of underlying iron oxides relative to anthrarufin on bare fused silica. Interactions between the organic and inorganic thin films, apparent in spectral shifts of the anthrarufin bands, are consistent with presumed free-electron quenching of semiquinone anion radicals by the iron oxide layers, effectively protecting the organic compound from photodegradation. Combining such in situ real-time kinetic measurements of thin films in future space exposure experiments on the ISS with postflight sample return and analysis will provide time-course studies complemented by in-depth chemical analysis. This will facilitate the characterization and modeling of the chemistry of organic species associated with mineral surfaces in astrobiological contexts.


ieee aerospace conference | 2010

The rover sample cache system: Planetary protection for sample return missions

Orlando Santos; Mark Fonda; John Stanley Karcz; Robert N. Bowman; John H. Reimer; Gelsomina Cappuccio

NASA Ames Research Center has designed and developed a Rover Sample Cache System (RSCS) for use on the Mars Science Laboratory. 12The RSCS is a small container that can accommodate rock samples, and be picked up by a future sample return mission. This hardware is the first NASA has built that could make a round trip to Mars. Although the decision has been made to not fly the RSCS, its development illustrates important Planetary Protection considerations. Policies for sample return missions have not yet been fully vetted by the international community, and will be the subject of future discussions at COSPAR. In this paper, we describe the development of new protocols and requirements for the RSCS. Testing consisted of two main components: the NASA Standard Assay of all mated and exposed surfaces, and the collection of samples for a DNA sequence-based genetic inventory of all microorganisms sampled from the RSCS and related assembly environments.


44th Lunar and Planetary Science Conference | 2013

Lunar and Planetary Science Conference

Richard C. Quinn; Andreas Elsaesser; Pascale Ehrenfreund; Antonio J. Ricco; A. Breitenbach; J. Chan; A. Fresneau; Jason Alonzo; Andrew Mattioda; Farid Salama; Orlando Santos; E. Sciamma-O'Brien; H. Cottin; E. Dartois; L. d'Hendecourt; René Demets; Bernard H. Foing; Zita Martins; Mark A. Sephton; Marco Spaans


Advances in Space Research | 2001

Life sciences flight hardware development for the International Space Station.

V.D. Kern; S. Bhattacharya; Robert N. Bowman; F.M. Donovan; C. Elland; T.F. Fahlen; Beverly Girten; M. Kirven-Brooks; K. Lagel; G.B. Meeker; Orlando Santos


Acta Astronautica | 2014

The O/OREOS mission—Astrobiology in low Earth orbit

Pascale Ehrenfreund; Antonio J. Ricco; David Squires; Christopher Kitts; Elwood Agasid; Nathan Earl Bramall; Kathryn L. Bryson; Julie Diane Chittenden; Catharine A. Conley; Amanda Cook; Rocco L. Mancinelli; Andrew Mattioda; Wayne L. Nicholson; Richard C. Quinn; Orlando Santos; G. Tahu; M. Voytek; Chris Beasley; Laura Bica; Millan Diaz-Aguado; Charlie Friedericks; Mike Henschke; David Landis; Ed Luzzi; Diana Ly; Nghia Mai; Giovanni Minelli; Mike McIntyre; Michael Neumann; Macarena Parra


Planetary and Space Science | 2012

The development of the Space Environment Viability of Organics (SEVO) experiment aboard the Organism/Organic Exposure to Orbital Stresses (O/OREOS) satellite

Nathan Earl Bramall; Richard C. Quinn; Andrew Mattioda; Kathryn L. Bryson; Julie Diane Chittenden; Amanda Cook; Cindy Taylor; Giovanni Minelli; Pascale Ehrenfreund; Antonio J. Ricco; David Squires; Orlando Santos; Charles Friedericks; David Landis; Nykola C. Jones; Farid Salama; Louis J. Allamandola; Søren V. Hoffmann


Archive | 2011

Initial On-Orbit Engineering Results from the O/OREOS Nanosatellite

Christopher Kitts; Mike Rasay; Laura Bica; Ignacio Mas; Michael Neumann; Anthony Young; Giovanni Minelli; Antonio J. Ricco; Eric Stackpole; Elwood Agasid; Christopher Beasley; Charlie Friedericks; David Squires; Pascale Ehrenfreund; Wayne L. Nicholson; Rocco L. Mancinelli; Orlando Santos; Richard C. Quinn; Nathan Earl Bramall; Andrew Mattioda; Amanda Cook; Julie Diane Chittenden; Katie Bryson; Matthew Piccini; Macarena Parra


Archive | 2013

American Astronomical Society Meeting Abstracts

Jason Alonzo; A. Fresneau; Andreas Elsaesser; J. Chan; A. Breitenbach; Pascale Ehrenfreund; Antonio J. Ricco; Farid Salama; Andrew Mattioda; Orlando Santos; H. Cottin; E. Dartois; L. d'Hendecourt; René Demets; Bernard H. Foing; Zita Martins; Mark A. Sephton; Marco Spaans; Richard C. Quinn

Collaboration


Dive into the Orlando Santos's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pascale Ehrenfreund

George Washington University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge