Oscar C. Bedoya-Reina
Pennsylvania State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Oscar C. Bedoya-Reina.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Webb Miller; Stephan C. Schuster; Andreanna J. Welch; Aakrosh Ratan; Oscar C. Bedoya-Reina; Fangqing Zhao; Hie Lim Kim; Richard Burhans; Daniela I. Drautz; Nicola E. Wittekindt; Lynn P. Tomsho; Enrique Ibarra-Laclette; Luis Herrera-Estrella; Elizabeth Peacock; Sean D. Farley; George K. Sage; Karyn D. Rode; Martyn E. Obbard; Rafael Montiel; Lutz Bachmann; Ólafur Ingólfsson; Jon Aars; Thomas Mailund; Øystein Wiig; Sandra L. Talbot; Charlotte Lindqvist
Polar bears (PBs) are superbly adapted to the extreme Arctic environment and have become emblematic of the threat to biodiversity from global climate change. Their divergence from the lower-latitude brown bear provides a textbook example of rapid evolution of distinct phenotypes. However, limited mitochondrial and nuclear DNA evidence conflicts in the timing of PB origin as well as placement of the species within versus sister to the brown bear lineage. We gathered extensive genomic sequence data from contemporary polar, brown, and American black bear samples, in addition to a 130,000- to 110,000-y old PB, to examine this problem from a genome-wide perspective. Nuclear DNA markers reflect a species tree consistent with expectation, showing polar and brown bears to be sister species. However, for the enigmatic brown bears native to Alaskas Alexander Archipelago, we estimate that not only their mitochondrial genome, but also 5–10% of their nuclear genome, is most closely related to PBs, indicating ancient admixture between the two species. Explicit admixture analyses are consistent with ancient splits among PBs, brown bears and black bears that were later followed by occasional admixture. We also provide paleodemographic estimates that suggest bear evolution has tracked key climate events, and that PB in particular experienced a prolonged and dramatic decline in its effective population size during the last ca. 500,000 years. We demonstrate that brown bears and PBs have had sufficiently independent evolutionary histories over the last 4–5 million years to leave imprints in the PB nuclear genome that likely are associated with ecological adaptation to the Arctic environment.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Webb Miller; Vanessa M. Hayes; Aakrosh Ratan; Desiree C. Petersen; Nicola E. Wittekindt; Jason R. Miller; Brian Walenz; James Knight; Ji Qi; Fangqing Zhao; Qingyu Wang; Oscar C. Bedoya-Reina; Neerja Katiyar; Lynn P. Tomsho; Lindsay McClellan Kasson; Rae-Anne Hardie; Paula Woodbridge; Elizabeth A. Tindall; Mads F. Bertelsen; Dale Dixon; Stephen Pyecroft; Kristofer M. Helgen; Arthur M. Lesk; Thomas H. Pringle; Nick Patterson; Yu Zhang; Alexandre Kreiss; Gm Woods; Menna E. Jones; Stephan C. Schuster
The Tasmanian devil (Sarcophilus harrisii) is threatened with extinction because of a contagious cancer known as Devil Facial Tumor Disease. The inability to mount an immune response and to reject these tumors might be caused by a lack of genetic diversity within a dwindling population. Here we report a whole-genome analysis of two animals originating from extreme northwest and southeast Tasmania, the maximal geographic spread, together with the genome from a tumor taken from one of them. A 3.3-Gb de novo assembly of the sequence data from two complementary next-generation sequencing platforms was used to identify 1 million polymorphic genomic positions, roughly one-quarter of the number observed between two genetically distant human genomes. Analysis of 14 complete mitochondrial genomes from current and museum specimens, as well as mitochondrial and nuclear SNP markers in 175 animals, suggests that the observed low genetic diversity in todays population preceded the Devil Facial Tumor Disease disease outbreak by at least 100 y. Using a genetically characterized breeding stock based on the genome sequence will enable preservation of the extant genetic diversity in future Tasmanian devil populations.
Cell Reports | 2015
Vincent J. Lynch; Oscar C. Bedoya-Reina; Aakrosh Ratan; Michael Sulak; Daniela I. Drautz-Moses; George H. Perry; Webb Miller; Stephan C. Schuster
Woolly mammoths and living elephants are characterized by major phenotypic differences that have allowed them to live in very different environments. To identify the genetic changes that underlie the suite of woolly mammoth adaptations to extreme cold, we sequenced the nuclear genome from three Asian elephants and two woolly mammoths, and we identified and functionally annotated genetic changes unique to woolly mammoths. We found that genes with mammoth-specific amino acid changes are enriched in functions related to circadian biology, skin and hair development and physiology, lipid metabolism, adipose development and physiology, and temperature sensation. Finally, we resurrected and functionally tested the mammoth and ancestral elephant TRPV3 gene, which encodes a temperature-sensitive transient receptor potential (thermoTRP) channel involved in thermal sensation and hair growth, and we show that a single mammoth-specific amino acid substitution in an otherwise highly conserved region of the TRPV3 channel strongly affects its temperature sensitivity.
Genome Biology and Evolution | 2014
Andreanna J. Welch; Oscar C. Bedoya-Reina; Lorenzo Carretero-Paulet; Webb Miller; Karyn D. Rode; Charlotte Lindqvist
Polar bears (Ursus maritimus) face extremely cold temperatures and periods of fasting, which might result in more severe energetic challenges than those experienced by their sister species, the brown bear (U. arctos). We have examined the mitochondrial and nuclear genomes of polar and brown bears to investigate whether polar bears demonstrate lineage-specific signals of molecular adaptation in genes associated with cellular respiration/energy production. We observed increased evolutionary rates in the mitochondrial cytochrome c oxidase I gene in polar but not brown bears. An amino acid substitution occurred near the interaction site with a nuclear-encoded subunit of the cytochrome c oxidase complex and was predicted to lead to a functional change, although the significance of this remains unclear. The nuclear genomes of brown and polar bears demonstrate different adaptations related to cellular respiration. Analyses of the genomes of brown bears exhibited substitutions that may alter the function of proteins that regulate glucose uptake, which could be beneficial when feeding on carbohydrate-dominated diets during hyperphagia, followed by fasting during hibernation. In polar bears, genes demonstrating signatures of functional divergence and those potentially under positive selection were enriched in functions related to production of nitric oxide (NO), which can regulate energy production in several different ways. This suggests that polar bears may be able to fine-tune intracellular levels of NO as an adaptive response to control trade-offs between energy production in the form of adenosine triphosphate versus generation of heat (thermogenesis).
Proceedings of the National Academy of Sciences of the United States of America | 2013
George H. Perry; Edward E. Louis; Aakrosh Ratan; Oscar C. Bedoya-Reina; Richard Burhans; Runhua Lei; Steig E. Johnson; Stephan C. Schuster; Webb Miller
We performed a population genomics study of the aye-aye, a highly specialized nocturnal lemur from Madagascar. Aye-ayes have low population densities and extensive range requirements that could make this flagship species particularly susceptible to extinction. Therefore, knowledge of genetic diversity and differentiation among aye-aye populations is critical for conservation planning. Such information may also advance our general understanding of Malagasy biogeography, as aye-ayes have the largest species distribution of any lemur. We generated and analyzed whole-genome sequence data for 12 aye-ayes from three regions of Madagascar (North, West, and East). We found that the North population is genetically distinct, with strong differentiation from other aye-ayes over relatively short geographic distances. For comparison, the average FST value between the North and East aye-aye populations—separated by only 248 km—is over 2.1-times greater than that observed between human Africans and Europeans. This finding is consistent with prior watershed- and climate-based hypotheses of a center of endemism in northern Madagascar. Taken together, these results suggest a strong and long-term biogeographical barrier to gene flow. Thus, the specific attention that should be directed toward preserving large, contiguous aye-aye habitats in northern Madagascar may also benefit the conservation of other distinct taxonomic units. To help facilitate future ecological- and conservation-motivated population genomic analyses by noncomputational biologists, the analytical toolkit used in this study is available on the Galaxy Web site.
BMC Genomics | 2017
Vincent Doublet; Yvonne Poeschl; Andreas Gogol-Döring; Cédric Alaux; Desiderato Annoscia; Christian Aurori; Seth M. Barribeau; Oscar C. Bedoya-Reina; Mark J. F. Brown; James C. Bull; Michelle L. Flenniken; David A. Galbraith; Elke Genersch; Sebastian Gisder; Ivo Grosse; Holly L. Holt; Dan Hultmark; H. M. G. Lattorff; Y. Le Conte; Fabio Manfredini; Dino P. McMahon; Robin F. A. Moritz; Francesco Nazzi; Elina L. Niño; Katja Nowick; R.P. van Rij; Robert J. Paxton; Christina M. Grozinger
BackgroundOrganisms typically face infection by diverse pathogens, and hosts are thought to have developed specific responses to each type of pathogen they encounter. The advent of transcriptomics now makes it possible to test this hypothesis and compare host gene expression responses to multiple pathogens at a genome-wide scale. Here, we performed a meta-analysis of multiple published and new transcriptomes using a newly developed bioinformatics approach that filters genes based on their expression profile across datasets. Thereby, we identified common and unique molecular responses of a model host species, the honey bee (Apis mellifera), to its major pathogens and parasites: the Microsporidia Nosema apis and Nosema ceranae, RNA viruses, and the ectoparasitic mite Varroa destructor, which transmits viruses.ResultsWe identified a common suite of genes and conserved molecular pathways that respond to all investigated pathogens, a result that suggests a commonality in response mechanisms to diverse pathogens. We found that genes differentially expressed after infection exhibit a higher evolutionary rate than non-differentially expressed genes. Using our new bioinformatics approach, we unveiled additional pathogen-specific responses of honey bees; we found that apoptosis appeared to be an important response following microsporidian infection, while genes from the immune signalling pathways, Toll and Imd, were differentially expressed after Varroa/virus infection. Finally, we applied our bioinformatics approach and generated a gene co-expression network to identify highly connected (hub) genes that may represent important mediators and regulators of anti-pathogen responses.ConclusionsOur meta-analysis generated a comprehensive overview of the host metabolic and other biological processes that mediate interactions between insects and their pathogens. We identified key host genes and pathways that respond to phylogenetically diverse pathogens, representing an important source for future functional studies as well as offering new routes to identify or generate pathogen resilient honey bee stocks. The statistical and bioinformatics approaches that were developed for this study are broadly applicable to synthesize information across transcriptomic datasets. These approaches will likely have utility in addressing a variety of biological questions.
GigaScience | 2013
Oscar C. Bedoya-Reina; Aakrosh Ratan; Richard Burhans; Hie Lim Kim; Belinda Giardine; Cathy Riemer; Qunhua Li; Thomas L. Olson; Thomas P. Loughran; Bridgett M. vonHoldt; George H. Perry; Stephan C. Schuster; Webb Miller
BackgroundIntra-species genetic variation can be used to investigate population structure, selection, and gene flow in non-model vertebrates; and due to the plummeting costs for genome sequencing, it is now possible for small labs to obtain full-genome variation data from their species of interest. However, those labs may not have easy access to, and familiarity with, computational tools to analyze those data.ResultsWe have created a suite of tools for the Galaxy web server aimed at handling nucleotide and amino-acid polymorphisms discovered by full-genome sequencing of several individuals of the same species, or using a SNP genotyping microarray. In addition to providing user-friendly tools, a main goal is to make published analyses reproducible. While most of the examples discussed in this paper deal with nuclear-genome diversity in non-human vertebrates, we also illustrate the application of the tools to fungal genomes, human biomedical data, and mitochondrial sequences.ConclusionsThis project illustrates that a small group can design, implement, test, document, and distribute a Galaxy tool collection to meet the needs of a particular community of biologists.
BMC Genomics | 2015
Zachary L. Fuller; Elina L. Niño; Harland M. Patch; Oscar C. Bedoya-Reina; Tracey Baumgarten; Elliud Muli; Fiona Mumoki; Aakrosh Ratan; John J. McGraw; Maryann Frazier; Daniel K. Masiga; Stephen C. Schuster; Christina M. Grozinger; Webb Miller
BackgroundWith the development of inexpensive, high-throughput sequencing technologies, it has become feasible to examine questions related to population genetics and molecular evolution of non-model species in their ecological contexts on a genome-wide scale. Here, we employed a newly developed suite of integrated, web-based programs to examine population dynamics and signatures of selection across the genome using several well-established tests, including FST, pN/pS, and McDonald-Kreitman. We applied these techniques to study populations of honey bees (Apis mellifera) in East Africa. In Kenya, there are several described A. mellifera subspecies, which are thought to be localized to distinct ecological regions.ResultsWe performed whole genome sequencing of 11 worker honey bees from apiaries distributed throughout Kenya and identified 3.6 million putative single-nucleotide polymorphisms. The dense coverage allowed us to apply several computational procedures to study population structure and the evolutionary relationships among the populations, and to detect signs of adaptive evolution across the genome. While there is considerable gene flow among the sampled populations, there are clear distinctions between populations from the northern desert region and those from the temperate, savannah region. We identified several genes showing population genetic patterns consistent with positive selection within African bee populations, and between these populations and European A. mellifera or Asian Apis florea.ConclusionsThese results lay the groundwork for future studies of adaptive ecological evolution in honey bees, and demonstrate the use of new, freely available web-based tools and workflows (http://usegalaxy.org/r/kenyanbee) that can be applied to any model system with genomic information.
bioRxiv | 2018
Sheila Ktichen; Aakrosh Ratan; Oscar C. Bedoya-Reina; Rico Burhans; Nicole D. Fogarty; Webb Miller; Iliana B. Baums
Genomic sequence data for non-model organisms are increasingly available requiring the development of efficient and reproducible workflows. Here, we develop the first genomic resources and reproducible workflows for two threatened members of the reef-building coral genus Acropora. We generated genomic sequence data from multiple samples of the Caribbean A. cervicornis (staghorn coral) and A. palmata (elkhorn coral), and predicted millions of nucleotide variants among these two species and the Pacific A. digitifera. A subset of predicted nucleotide variants were verified using restriction length polymorphism assays and proved useful in distinguishing the two Caribbean Acroporids and the hybrid they form (“A. prolifera”). Nucleotide variants are freely available from the Galaxy server (usegalaxy.org), and can be analyzed there with computational tools and stored workflows that require only an internet browser. We describe these data and some of the analysis tools, concentrating on fixed differences between A. cervicornis and A. palmata. In particular, we found that fixed amino acid differences between these two species were enriched in proteins associated with development, cellular stress response and the host’s interactions with associated microbes, for instance in the Wnt pathway, ABC transporters and superoxide dismutase. Identified candidate genes may underlie functional differences in the way these threatened species respond to changing environments. Users can expand the presented analyses easily by adding genomic data from additional species as they become available. Article Summary We provide the first comprehensive genomic resources for two threatened Caribbean reef-building corals in the genus Acropora. We identified genetic differences in key pathways and genes known to be important in the animals’ response to the environmental disturbances and larval development. We further provide a list of candidate loci for large scale genotyping of these species to gather intra- and interspecies differences between A. cervicornis and A. palmata across their geographic range. All analyses and workflows are made available and can be used as a resource to not only analyze these corals but other non-model organisms.
BMC Genomics | 2017
Vincent Doublet; Yvonne Poeschl; Andreas Gogol-Döring; Cédric Alaux; Desiderato Annoscia; Christian Aurori; Seth M. Barribeau; Oscar C. Bedoya-Reina; Mark J. F. Brown; James C. Bull; Michelle L. Flenniken; David A. Galbraith; Elke Genersch; Sebastian Gisder; Ivo Grosse; Holly L. Holt; Dan Hultmark; H. Michael G. Lattorff; Yves Le Conte; Fabio Manfredini; Dino P. McMahon; Robin F. A. Moritz; Francesco Nazzi; Elina L. Niño; Katja Nowick; Ronald P. van Rij; Robert J. Paxton; Christina M. Grozinger