Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Oscar M. Bautista-Aguilera is active.

Publication


Featured researches published by Oscar M. Bautista-Aguilera.


European Journal of Medicinal Chemistry | 2014

Donepezil + propargylamine + 8-hydroxyquinoline hybrids as new multifunctional metal-chelators, ChE and MAO inhibitors for the potential treatment of Alzheimer's disease.

Li Wang; Gerard Esteban; Masaki Ojima; Oscar M. Bautista-Aguilera; Tsutomu Inokuchi; Ignacio Moraleda; Isabel Iriepa; Abdelouahid Samadi; Moussa B. H. Youdim; Alejandro Romero; Elena Soriano; Raquel Herrero; Ana Patricia Fernández; Ricardo-Martínez-Murillo; José Marco-Contelles; Mercedes Unzeta

The synthesis, biochemical evaluation, ADMET, toxicity and molecular modeling of novel multi-target-directed Donepezil + Propargylamine + 8-Hydroxyquinoline (DPH) hybrids 1-7 for the potential prevention and treatment of Alzheimers disease is described. The most interesting derivative was racemic α-aminotrile4-(1-benzylpiperidin-4-yl)-2-(((8-hydroxyquinolin-5-yl)methyl)(prop-2-yn-1-yl)amino) butanenitrile (DPH6) [MAO A (IC50 = 6.2 ± 0.7 μM; MAO B (IC50 = 10.2 ± 0.9 μM); AChE (IC50 = 1.8 ± 0.1 μM); BuChE (IC50 = 1.6 ± 0.25 μM)], an irreversible MAO A/B inhibitor and mixed-type AChE inhibitor with metal-chelating properties. According to docking studies, both DPH6 enantiomers interact simultaneously with the catalytic and peripheral site of EeAChE through a linker of appropriate length, supporting the observed mixed-type AChE inhibition. Both enantiomers exhibited a relatively similar position of both hydroxyquinoline and benzyl moieties with the rest of the molecule easily accommodated in the relatively large cavity of MAO A. For MAO B, the quinoline system was hosted at the cavity entrance whereas for MAO A this system occupied the substrate cavity. In this disposition the quinoline moiety interacted directly with the FAD aromatic ring. Very similar binding affinity values were also observed for both enantiomers with ChE and MAO enzymes. DPH derivatives exhibited moderate to good ADMET properties and brain penetration capacity for CNS activity. DPH6 was less toxic than donepezil at high concentrations; while at low concentrations both displayed a similar cell viability profile. Finally, in a passive avoidance task, the antiamnesic effect of DPH6 was tested on mice with experimentally induced amnesia. DPH6 was capable to significantly decrease scopolamine-induced learning deficits in healthy adult mice.


European Journal of Medicinal Chemistry | 2014

Design, synthesis, pharmacological evaluation, QSAR analysis, molecular modeling and ADMET of novel donepezil–indolyl hybrids as multipotent cholinesterase/monoamine oxidase inhibitors for the potential treatment of Alzheimer's disease

Oscar M. Bautista-Aguilera; Gerard Esteban; Irene Bolea; Katarina Nikolic; Danica Agbaba; Ignacio Moraleda; Isabel Iriepa; Abdelouahid Samadi; Elena Soriano; Mercedes Unzeta; José Marco-Contelles

The design, synthesis, and pharmacological evaluation of donepezil-indolyl based amines 7-10, amides 12-16, and carboxylic acid derivatives 5 and 11, as multipotent ASS234 analogs, able to inhibit simultaneously cholinesterase (ChE) and monoamine oxidase (MAO) enzymes for the potential treatment of Alzheimers disease (AD), is reported. Theoretical studies using 3D-Quantitative Structure-Activity Relationship (3D-QSAR) was used to define 3D-pharmacophores for inhibition of MAO A/B, AChE, and BuChE enzymes. We found that, in general, and for the same substituent, amines are more potent ChE inhibitors (see compounds 12, 13 versus 7 and 8) or equipotent (see compounds 14, 15 versus 9 and 10) than the corresponding amides, showing a clear EeAChE inhibition selectivity. For the MAO inhibition, amides were not active, and among the amines, compound 14 was totally MAO A selective, while amines 15 and 16 were quite MAO A selective. Carboxylic acid derivatives 5 and 11 showed a multipotent moderate selective profile as EeACE and MAO A inhibitors. Propargylamine 15 [N-((5-(3-(1-benzylpiperidin-4-yl)propoxy)-1-methyl-1H-indol-2-yl)methyl)prop-2-yn-1-amine] resulted in the most potent hMAO A (IC50 = 5.5 ± 1.4 nM) and moderately potent hMAO B (IC50 = 150 ± 31 nM), EeAChE (IC50 = 190 ± 10 nM), and eqBuChE (IC50 = 830 ± 160 nM) inhibitor. However, the analogous N-allyl and the N-morpholine derivatives 16 and 14 deserve also attention as they show an attractive multipotent profile. To sum up, donepezil-indolyl hybrid 15 is a promising drug for further development for the potential prevention and treatment of AD.


Journal of Medicinal Chemistry | 2014

N-methyl-N-((1-methyl-5-(3-(1-(2-methylbenzyl)piperidin-4-yl)propoxy)-1H-indol-2-yl)methyl)prop-2-yn-1-amine, a new cholinesterase and monoamine oxidase dual inhibitor

Oscar M. Bautista-Aguilera; Abdelouahid Samadi; Mourad Chioua; Katarina Nikolic; Slavica Filipic; Danica Agbaba; Elena Soriano; Lucía de Andrés; María Isabel Rodríguez-Franco; Stefano Alcaro; Rona R. Ramsay; Francesco Ortuso; Matilde Yáñez; José Marco-Contelles

On the basis of N-((5-(3-(1-benzylpiperidin-4-yl)propoxy)-1-methyl-1H-indol-2-yl)methyl)-N-methylprop-2-yn-1-amine (II, ASS234) and QSAR predictions, in this work we have designed, synthesized, and evaluated a number of new indole derivatives from which we have identified N-methyl-N-((1-methyl-5-(3-(1-(2-methylbenzyl)piperidin-4-yl)propoxy)-1H-indol-2-yl)methyl)prop-2-yn-1-amine (2, MBA236) as a new cholinesterase and monoamine oxidase dual inhibitor.


Drug Design Development and Therapy | 2014

Multipotent cholinesterase/monoamine oxidase inhibitors for the treatment of Alzheimer’s disease: design, synthesis, biochemical evaluation, ADMET, molecular modeling, and QSAR analysis of novel donepezil-pyridyl hybrids

Oscar M. Bautista-Aguilera; Gerard Esteban; Mourad Chioua; Katarina Nikolic; Danica Agbaba; Ignacio Moraleda; Isabel Iriepa; Elena Soriano; Abdelouahid Samadi; Mercedes Unzeta; José Marco-Contelles

The design, synthesis, and biochemical evaluation of donepezil-pyridyl hybrids (DPHs) as multipotent cholinesterase (ChE) and monoamine oxidase (MAO) inhibitors for the potential treatment of Alzheimer’s disease (AD) is reported. The 3D-quantitative structure-activity relationship study was used to define 3D-pharmacophores for inhibition of MAO A/B, acetylcholinesterase (AChE), and butyrylcholinesterase (BuChE) enzymes and to design DPHs as novel multi-target drug candidates with potential impact in the therapy of AD. DPH14 (Electrophorus electricus AChE [EeAChE]: half maximal inhibitory concentration [IC50] =1.1±0.3 nM; equine butyrylcholinesterase [eqBuChE]: IC50 =600±80 nM) was 318-fold more potent for the inhibition of AChE, and 1.3-fold less potent for the inhibition of BuChE than the reference compound ASS234. DPH14 is a potent human recombinant BuChE (hBuChE) inhibitor, in the same range as DPH12 or DPH16, but 13.1-fold less potent than DPH15 for the inhibition of human recombinant AChE (hAChE). Compared with donepezil, DPH14 is almost equipotent for the inhibition of hAChE, and 8.8-fold more potent for hBuChE. Concerning human monoamine oxidase (hMAO) A inhibition, only DPH9 and 5 proved active, compound DPH9 being the most potent (IC50 [MAO A] =5,700±2,100 nM). For hMAO B, only DPHs 13 and 14 were moderate inhibitors, and compound DPH14 was the most potent (IC50 [MAO B] =3,950±940 nM). Molecular modeling of inhibitor DPH14 within EeAChE showed a binding mode with an extended conformation, interacting simultaneously with both catalytic and peripheral sites of EeAChE thanks to a linker of appropriate length. Absortion, distribution, metabolism, excretion and toxicity analysis showed that structures lacking phenyl-substituent show better druglikeness profiles; in particular, DPHs13–15 showed the most suitable absortion, distribution, metabolism, excretion and toxicity properties. Novel donepezil-pyridyl hybrid DPH14 is a potent, moderately selective hAChE and selective irreversible hMAO B inhibitor which might be considered as a promising compound for further development for the treatment of AD.


Angewandte Chemie | 2017

Multitarget-Directed Ligands Combining Cholinesterase and Monoamine Oxidase Inhibition with Histamine H3R Antagonism for Neurodegenerative Diseases

Oscar M. Bautista-Aguilera; Stefanie Hagenow; Alejandra Palomino‐Antolin; Víctor Farré-Alins; Lhassane Ismaili; Pierre‐Louis Joffrin; María Luisa Jimeno; Ondřej Soukup; Jana Janockova; Lena Kalinowsky; Ewgenij Proschak; Isabel Iriepa; Ignacio Moraleda; Johannes Stephan Schwed; Alejandro Romero Martínez; Francisco López-Muñoz; Mourad Chioua; Javier Egea; Rona R. Ramsay; José Marco-Contelles; Holger Stark

The therapy of complex neurodegenerative diseases requires the development of multitarget-directed drugs (MTDs). Novel indole derivatives with inhibitory activity towards acetyl/butyrylcholinesterases and monoamine oxidases A/B as well as the histamine H3 receptor (H3R) were obtained by optimization of the neuroprotectant ASS234 by incorporating generally accepted H3R pharmacophore motifs. These small-molecule hits demonstrated balanced activities at the targets, mostly in the nanomolar concentration range. Additional in vitro studies showed antioxidative neuroprotective effects as well as the ability to penetrate the blood-brain barrier. With this promising in vitro profile, contilisant (at 1 mg kg-1 i.p.) also significantly improved lipopolysaccharide-induced cognitive deficits.


Mini-reviews in Medicinal Chemistry | 2015

Development of HuperTacrines as non-toxic, cholinesterase inhibitors for the potential treatment of Alzheimer’s disease

Mourad Chioua; Marta Pérez; Oscar M. Bautista-Aguilera; Matilde Yáñez; Manuela G. López; Alejandro Romero; Ramón Cacabelos; Raimon Puig de la Bellacasa; Simone Brogi; Stefania Butini; José I. Borrell; José Marco-Contelles

This paper describes our preliminary results on the ADMET, synthesis, biochemical evaluation, and molecular modeling of racemic HuperTacrines (HT), new hybrids resulting from the juxtaposition of huperzine A and tacrine for the potential treatment of Alzheimers disease (AD). The synthesis of these HT was executed by Friedländer-type reactions of 2-amino-6-oxo-1,6-dihydropyridine-3-carbonitriles, or 7-amino-2-oxo-1,2,3,4-tetrahydro-1,6-naphthyridine- 8-carbonitriles, with cyclohexanone. In the biochemical evaluation, initial and particular attention was devoted to test their toxicity on human hepatoma cells, followed by the in vitro inhibition of human cholinesterases (hAChE, and hBuChE), and the kinetics/mechanism of the inhibition of the most potent HT; simultaneous molecular modeling on the best HT provided the key binding interactions with the human cholinesterases. >From these analyses, (±)-5-amino-3-methyl- 3,4,6,7,8,9-hexahydrobenzo[b][1,8]naphthyridin-2(1H)-one (HT1) and (±)-5-amino-3-(2,6-dichlorophenyl)-3,4,6,7,8,9- hexahydrobenzo[b][1,8]naphthyridin-2(1H)-one (HT3) have emerged as characterized by extremely low liver toxicity reversible mixed-type, selective hAChE and, quite selective irreversible hBuChEIs, respectively, showing also good druglike properties for AD-targeted drugs.


Journal of Computer-aided Molecular Design | 2015

Predicting targets of compounds against neurological diseases using cheminformatic methodology

Katarina Nikolic; Lazaros Mavridis; Oscar M. Bautista-Aguilera; José Marco-Contelles; Holger Stark; Maria do Carmo Carreiras; Ilaria Rossi; Paola Massarelli; Danica Agbaba; Rona R. Ramsay; John B. O. Mitchell

Recently developed multi-targeted ligands are novel drug candidates able to interact with monoamine oxidase A and B; acetylcholinesterase and butyrylcholinesterase; or with histamine N-methyltransferase and histamine H3-receptor (H3R). These proteins are drug targets in the treatment of depression, Alzheimer’s disease, obsessive disorders, and Parkinson’s disease. A probabilistic method, the Parzen–Rosenblatt window approach, was used to build a “predictor” model using data collected from the ChEMBL database. The model can be used to predict both the primary pharmaceutical target and off-targets of a compound based on its structure. Molecular structures were represented based on the circular fingerprint methodology. The same approach was used to build a “predictor” model from the DrugBank dataset to determine the main pharmacological groups of the compound. The study of off-target interactions is now recognised as crucial to the understanding of both drug action and toxicology. Primary pharmaceutical targets and off-targets for the novel multi-target ligands were examined by use of the developed cheminformatic method. Several multi-target ligands were selected for further study, as compounds with possible additional beneficial pharmacological activities. The cheminformatic targets identifications were in agreement with four 3D-QSAR (H3R/D1R/D2R/5-HT2aR) models and by in vitro assays for serotonin 5-HT1a and 5-HT2a receptor binding of the most promising ligand (71/MBA-VEG8).


Molecules | 2016

Synthesis and biological evaluation of benzochromenopyrimidinones as cholinesterase inhibitors and potent antioxidant, non-hepatotoxic agents for Alzheimer’s disease

Youssef Dgachi; Oscar M. Bautista-Aguilera; Mohamed Benchekroun; Hélène Martin; Alexandre Bonet; Damijan Knez; Justyna Godyń; Barbara Malawska; Stanislav Gobec; Mourad Chioua; Jana Janockova; Ondrej Soukup; Fakher Chabchoub; José Marco-Contelles; Lhassane Ismaili

We report herein the straightforward two-step synthesis and biological assessment of novel racemic benzochromenopyrimidinones as non-hepatotoxic, acetylcholinesterase inhibitors with antioxidative properties. Among them, compound 3Bb displayed a mixed-type inhibition of human acetylcholinesterase (IC50 = 1.28 ± 0.03 μM), good antioxidant activity, and also proved to be non-hepatotoxic on human HepG2 cell line.


ACS Chemical Neuroscience | 2016

N-Benzylpiperidine Derivatives as α7 Nicotinic Receptor Antagonists

Manuel Criado; José Mulet; Francisco Sala; Salvador Sala; Inés Colmena; Luis Gandía; Oscar M. Bautista-Aguilera; Abdelouahid Samadi; Mourad Chioua; José Marco-Contelles

A series of multitarget directed propargylamines, as well as other differently susbstituted piperidines have been screened as potential modulators of neuronal nicotinic acetylcholine receptors (nAChRs). Most of them showed antagonist actions on α7 nAChRs. Especially, compounds 13, 26, and 38 displayed submicromolar IC50 values on homomeric α7 nAChRs, whereas they were less effective on heteromeric α3β4 and α4β2 nAChRs (up to 20-fold higher IC50 values in the case of 13). Antagonism was concentration dependent and noncompetitive, suggesting that these compounds behave as negative allosteric modulators of nAChRs. Upon the study of a series of less complex derivatives, the N-benzylpiperidine motif, common to these compounds, was found to be the main pharmacophoric group. Thus, 2-(1-benzylpiperidin-4-yl)-ethylamine (48) showed an inhibitory potency comparable to the one of the previous compounds and also a clear preference for α7 nAChRs. In a neuroblastoma cell line, representative compounds 13 and 48 also inhibited, in a concentration-dependent manner, cytosolic Ca(2+) signals mediated by nAChRs. Finally, compounds 38 and 13 inhibited 5-HT3A serotonin receptors whereas they had no effect on α1 glycine receptors. Given the multifactorial nature of many pathologies in which nAChRs are involved, these piperidine antagonists could have a therapeutic potential in cases where cholinergic activity has to be negatively modulated.


Journal of Medicinal Chemistry | 2018

Contilisant, a Tetratarget Small Molecule for Alzheimer’s Disease Therapy Combining Cholinesterase, Monoamine Oxidase Inhibition, and H3R Antagonism with S1R Agonism Profile

Oscar M. Bautista-Aguilera; Josiane Budni; Francielle Mina; Eduarda Behenck Medeiros; Winnie Deuther-Conrad; Jose-Manuel Entrena; Ignacio Moraleda; Isabel Iriepa; Francisco López-Muñoz; José Marco-Contelles

Contilisant, a permeable, antioxidant, and neuroprotectant agent, showing high nM affinity at H3R and excellent inhibition of the monoamine oxidases and cholinesterases, is an affine and selective S1R agonist in the nanomolar range, based on the binding affinity and functional experiment, a result confirmed by molecular modeling. In addition, contilisant significantly restores the cognitive deficit induced by Aβ1-42 in the radial maze assay in an in vivo Alzheimers disease test, comparing very favorably with donepezil.

Collaboration


Dive into the Oscar M. Bautista-Aguilera's collaboration.

Top Co-Authors

Avatar

José Marco-Contelles

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Mourad Chioua

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Abdelouahid Samadi

United Arab Emirates University

View shared research outputs
Top Co-Authors

Avatar

Lhassane Ismaili

University of Franche-Comté

View shared research outputs
Top Co-Authors

Avatar

Elena Soriano

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Rona R. Ramsay

University of St Andrews

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge