Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Oskar Burger is active.

Publication


Featured researches published by Oskar Burger.


Proceedings of the Royal Society of London B: Biological Sciences | 2007

The complex structure of hunter–gatherer social networks

Marcus J. Hamilton; Bruce T. Milne; Robert S. Walker; Oskar Burger; James H. Brown

In nature, many different types of complex system form hierarchical, self-similar or fractal-like structures that have evolved to maximize internal efficiency. In this paper, we ask whether hunter-gatherer societies show similar structural properties. We use fractal network theory to analyse the statistical structure of 1189 social groups in 339 hunter-gatherer societies from a published compilation of ethnographies. We show that population structure is indeed self-similar or fractal-like with the number of individuals or groups belonging to each successively higher level of organization exhibiting a constant ratio close to 4. Further, despite the wide ecological, cultural and historical diversity of hunter-gatherer societies, this remarkable self-similarity holds both within and across cultures and continents. We show that the branching ratio is related to density-dependent reproduction in complex environments and hypothesize that the general pattern of hierarchical organization reflects the self-similar properties of the networks and the underlying cohesive and disruptive forces that govern the flow of material resources, genes and non-genetic information within and between social groups. Our results offer insight into the energetics of human sociality and suggest that human social networks self-organize in response to similar optimization principles found behind the formation of many complex systems in nature.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Human mortality improvement in evolutionary context

Oskar Burger; Annette Baudisch; James W. Vaupel

Life expectancy is increasing in most countries and has exceeded 80 in several, as low-mortality nations continue to make progress in averting deaths. The health and economic implications of mortality reduction have been given substantial attention, but the observed malleability of human mortality has not been placed in a broad evolutionary context. We quantify the rate and amount of mortality reduction by comparing a variety of human populations to the evolved human mortality profile, here estimated as the average mortality pattern for ethnographically observed hunter-gatherers. We show that human mortality has decreased so substantially that the difference between hunter-gatherers and today’s lowest mortality populations is greater than the difference between hunter-gatherers and wild chimpanzees. The bulk of this mortality reduction has occurred since 1900 and has been experienced by only about 4 of the roughly 8,000 human generations that have ever lived. Moreover, mortality improvement in humans is on par with or greater than the reductions in mortality in other species achieved by laboratory selection experiments and endocrine pathway mutations. This observed plasticity in age-specific risk of death is at odds with conventional theories of aging.


Biological Reviews | 2012

Human macroecology: linking pattern and process in big-picture human ecology.

William R. Burnside; James H. Brown; Oskar Burger; Marcus J. Hamilton; Melanie E. Moses; Luís M. A. Bettencourt

Humans have a dual nature. We are subject to the same natural laws and forces as other species yet dominate global ecology and exhibit enormous variation in energy use, cultural diversity, and apparent social organization. We suggest scientists tackle these challenges with a macroecological approach—using comparative statistical techniques to identify deep patterns of variation in large datasets and to test for causal mechanisms. We show the power of a metabolic perspective for interpreting these patterns and suggesting possible underlying mechanisms, one that focuses on the exchange of energy and materials within and among human societies and with the biophysical environment. Examples on human foraging ecology, life history, space use, population structure, disease ecology, cultural and linguistic diversity patterns, and industrial and urban systems showcase the power and promise of this approach.


Evolutionary Anthropology | 2013

The human post‐fertile lifespan in comparative evolutionary context

Daniel A. Levitis; Oskar Burger; Laurie Bingaman Lackey

There persist two widely held but mutually inconsistent views on the evolution of post‐fertile lifespan of human females. The first, prevalent within anthropology, sees post‐fertile lifespan (PFLS) in the light of adaptive processes, focusing on the social and economic habits of humans that selected for a lengthy PFLS. This view rests on the assumption that human PFLS is distinct from that of other species, and focuses on quantifying the selective causes and consequences of that difference. The second view, prevalent within gerontology and comparative biology, emphasizes that PFLS is a phylogenetically widespread trait or that human PFLS is predictable based on life‐history allometries. In this view, human PFLS is part of a broad cross‐species pattern and its genesis cannot, therefore, rely on human‐specific traits. Those who advocate the second view have questioned the “special pleading” for human specific explanations of PFLS, and have argued that human PFLS is quantitatively greater but not qualitatively different than PFLS in many other animals. Papers asking whether human PFLS is explained by the importance of mothers more than grandmothers, whether paternal or maternal grandparents have more of an effect on child survival, or who is providing the excess calories are associated with the first view that assumes the need to explain the existence of human PFLS on the basis of a uniquely human socioecology. Anthropologists largely see human PFLS as derived, while comparative gerontologists point to evidence that it is one instance of a ubiquitous cross‐species pattern. The two groups generally occupy non‐overlapping research circles, in terms of conferences and journals, and therefore interact little enough to largely avoid the need to reconcile their views, allowing the persistence of misconceptions in each field. Our goal is to identify and address the most important of these misconceptions and thereby make clear that both of these seemingly incongruent views contain valid points. We argue that two distinct but related traits have been lumped together under the same concept of “post‐reproductive lifespan,” one (post‐fertile viability) that is tremendously widespread and another (a post‐fertile life stage) that is derived to hominins, and that the differences and connections between these two traits are necessary for understanding human life‐history evolution.


Archive | 2013

Human post-fertile lifespan

Daniel A. Levitis; Oskar Burger; Laurie Bingaman Lackey

There persist two widely held but mutually inconsistent views on the evolution of post‐fertile lifespan of human females. The first, prevalent within anthropology, sees post‐fertile lifespan (PFLS) in the light of adaptive processes, focusing on the social and economic habits of humans that selected for a lengthy PFLS. This view rests on the assumption that human PFLS is distinct from that of other species, and focuses on quantifying the selective causes and consequences of that difference. The second view, prevalent within gerontology and comparative biology, emphasizes that PFLS is a phylogenetically widespread trait or that human PFLS is predictable based on life‐history allometries. In this view, human PFLS is part of a broad cross‐species pattern and its genesis cannot, therefore, rely on human‐specific traits. Those who advocate the second view have questioned the “special pleading” for human specific explanations of PFLS, and have argued that human PFLS is quantitatively greater but not qualitatively different than PFLS in many other animals. Papers asking whether human PFLS is explained by the importance of mothers more than grandmothers, whether paternal or maternal grandparents have more of an effect on child survival, or who is providing the excess calories are associated with the first view that assumes the need to explain the existence of human PFLS on the basis of a uniquely human socioecology. Anthropologists largely see human PFLS as derived, while comparative gerontologists point to evidence that it is one instance of a ubiquitous cross‐species pattern. The two groups generally occupy non‐overlapping research circles, in terms of conferences and journals, and therefore interact little enough to largely avoid the need to reconcile their views, allowing the persistence of misconceptions in each field. Our goal is to identify and address the most important of these misconceptions and thereby make clear that both of these seemingly incongruent views contain valid points. We argue that two distinct but related traits have been lumped together under the same concept of “post‐reproductive lifespan,” one (post‐fertile viability) that is tremendously widespread and another (a post‐fertile life stage) that is derived to hominins, and that the differences and connections between these two traits are necessary for understanding human life‐history evolution.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Population stability, cooperation, and the invasibility of the human species

Marcus J. Hamilton; Oskar Burger; John P. DeLong; Robert S. Walker; Melanie E. Moses; James H. Brown

The biogeographic expansion of modern humans out of Africa began ≈50,000 years ago. This expansion resulted in the colonization of most of the land area and habitats throughout the globe and in the replacement of preexisting hominid species. However, such rapid population growth and geographic spread is somewhat unexpected for a large primate with a slow, density-dependent life history. Here, we suggest a mechanism for these outcomes by modifying a simple density-dependent population model to allow varying levels of intraspecific competition for finite resources. Reducing intraspecific competition increases carrying capacities, growth rates, and stability, including persistence times and speed of recovery from perturbations. Our model suggests that the energetic benefits of cooperation in modern humans may have outweighed the slow rate of human population growth, effectively ensuring that once modern humans colonized a region long-term population persistence was near inevitable. Our model also provides insight into the interplay of structural complexity and stability in social species.


PLOS ONE | 2010

Current Demographics Suggest Future Energy Supplies Will Be Inadequate to Slow Human Population Growth

John P. DeLong; Oskar Burger; Marcus J. Hamilton

Influential demographic projections suggest that the global human population will stabilize at about 9–10 billion people by mid-century. These projections rest on two fundamental assumptions. The first is that the energy needed to fuel development and the associated decline in fertility will keep pace with energy demand far into the future. The second is that the demographic transition is irreversible such that once countries start down the path to lower fertility they cannot reverse to higher fertility. Both of these assumptions are problematic and may have an effect on population projections. Here we examine these assumptions explicitly. Specifically, given the theoretical and empirical relation between energy-use and population growth rates, we ask how the availability of energy is likely to affect population growth through 2050. Using a cross-country data set, we show that human population growth rates are negatively related to per-capita energy consumption, with zero growth occurring at ∼13 kW, suggesting that the global human population will stop growing only if individuals have access to this amount of power. Further, we find that current projected future energy supply rates are far below the supply needed to fuel a global demographic transition to zero growth, suggesting that the predicted leveling-off of the global population by mid-century is unlikely to occur, in the absence of a transition to an alternative energy source. Direct consideration of the energetic constraints underlying the demographic transition results in a qualitatively different population projection than produced when the energetic constraints are ignored. We suggest that energetic constraints be incorporated into future population projections.


Biology Letters | 2010

The May threshold and life-history allometry

Lev R. Ginzburg; Oskar Burger; John Damuth

One of Robert Mays classic results was finding that population dynamics become chaotic when the average lifetime rate of reproduction exceeds a certain value. Populations whose reproductive rates exceed this May threshold probably become extinct. The May threshold in each case depends upon the shape of the density-dependence curve, which differs among models of population growth. However, species of different sizes and generation times that share a roughly similar density-dependence curve will also share a similar May threshold. Here, we argue that this fact predicts a striking allometric regularity among animal taxa: lifetime reproductive rate should be roughly independent of body size. Such independence has been observed in diverse taxa, but has usually been ascribed to a fortuitous combination of physiologically based life-history allometries. We suggest, instead, that the ecological elimination of unstable populations within groups that share a value of the May threshold is a likely cause of this allometry.


Journal of Field Archaeology | 2002

Multi-Scale and Nested-Intensity Sampling Techniques for Archaeological Survey

Oskar Burger; Lawrence C. Todd; Paul Burnett; Tomas J. Stohlgren; Doug Stephens

Abstract This paper discusses sampling techniques for archaeological survey that are directed toward evaluating the properties of surface artifact distributions. The sampling techniques we experimented with consist of a multi-scale sampling plot developed in plant ecology and the use of a nested-intensity survey design. We present results from the initial application of these methods. The sampling technique we borrowed from plant ecology is the Modified-Whittaker multiscale sampling plot, which gathers observations at the spatial scales of 1 sq m, 10 sq m, 100 sq m, and 1000 sq m. Nested-intensity surveys gather observations on the same sample units at multiple resolutions. We compare the results of a closely-spaced walking survey, a crawling survey, and a test excavation to a depth of 10 cm. These techniques were applied to ten 20 × 50 m survey plots distributed over an area of 418 ha near the Hudson-Meng Bison Bonebed in NW Nebraska. These approaches can significantly improve the accuracy of survey data. Our results show that high-resolution coverage techniques overlook more material than archaeologists have suspected. The combined approaches of multi-scale and nested-intensity sampling provide new tools to improve our ability to investigate the properties of surface records.


Proceedings of the Royal Society of London B: Biological Sciences | 2010

Lifetime reproductive effort in humans

Oskar Burger; Robert S. Walker; Marcus J. Hamilton

Lifetime reproductive effort (LRE) measures the total amount of metabolized energy diverted to reproduction during the lifespan. LRE captures key components of the life history and is particularly useful for describing and comparing the life histories of different organisms. Given a simple energetic production constraint, LRE is predicted to be similar in value for very different life histories. However, humans have some unique ecological characteristics that may alter LRE, such as the long post-reproductive lifespan, lengthy juvenile period and the cooperative nature of human foraging and reproduction. We calculate LRE for natural fertility human populations, compare the findings to other mammals and discuss the implications for human life-history evolution. We find that human life-history traits combine to yield the theoretically predicted value (approx. 1.4). Thus, even with the subsidized energy budget and uniqueness of the adult lifespan, human reproductive strategies converge on the same optimal value of LRE. This suggests that the fundamental demographic variables contained in LRE trade-off against one another in a predictable and highly constrained manner.

Collaboration


Dive into the Oskar Burger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

John P. DeLong

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

James H. Brown

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel A. Levitis

University of Southern Denmark

View shared research outputs
Researchain Logo
Decentralizing Knowledge