Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Otto G. Franz is active.

Publication


Featured researches published by Otto G. Franz.


The Astrophysical Journal | 1999

The Optical Mass-Luminosity Relation at the End of the Main Sequence (0.08-0.20 M☉)*

Todd J. Henry; Otto G. Franz; Lawrence H. Wasserman; G. Fritz Benedict; Peter John Shelus; Philip A. Ianna; J. Davy Kirkpatrick; Donald W. McCarthy

The empirical mass-luminosity relation at M is presented for stars with masses 0.08-0.20 M☉ based upon new observations made with Fine Guidance Sensor 3 on the Hubble Space Telescope. The targets are nearby, red dwarf multiple systems in which the magnitude differences are typically measured to ±0.1 mag or better. The M values are generated using the best available parallaxes and are also accurate to ±0.1 mag, because the errors in the magnitude differences are the dominant error source. In several cases this is the first time the observed sub-arcsecond multiples have been resolved at optical wavelengths. The mass-luminosity relation defined by these data reaches to M=18.5 and provides a powerful empirical test for discriminating the lowest mass stars from high-mass brown dwarfs at wavelengths shorter than 1 μm.


The Astronomical Journal | 2002

Astrometry with the Hubble Space Telescope: A Parallax of the Fundamental Distance Calibrator RR Lyrae*

G. Fritz Benedict; Barbara E. McArthur; Laurence W. Fredrick; Thomas E. Harrison; J. T. Lee; Catherine L. Slesnick; June-Koo Kevin Rhee; Richard J. Patterson; Edmund P. Nelan; William Hamilton Jefferys; W. F. van Altena; Peter John Shelus; Otto G. Franz; L. H. Wasserman; Paul D. Hemenway; Raynor L. Duncombe; Darrell B. Story; A. L. Whipple; Arthur J. Bradley

We present an absolute parallax and relative proper motion for the fundamental distance scale calibrator � Cep. We obtain these with astrometric data from FGS 3, a white-light interferometer on the Hubble Space Telescope (HST). Utilizing spectrophotometric estimates of the absolute parallaxes of our astrometric reference stars and constrainingCep and reference star HD 213307 to belong to the same association (Cep OB6), we findabs = 3.66 � 0.15 mas. The larger than typical astrometric residuals for the nearby astrome- tric reference star HD 213307 are found to satisfy Keplerian motion with P = 1.07 � 0.02 yr, a perturbation and period that could be due to an F0 V companion � 7 mas distant from and � 4 mag fainter than the pri- mary. Spectral classifications and VRIJHKT2M and DDO51 photometry of the astrometric reference frame surroundingCep indicate that field extinction is high and variable along this line of sight. However the extinction suffered by the reference star nearest (in angular separation and distance) toCep, HD 213307, is lower and nearly the same as forCep. Correcting for color differences, we find hAVi = 0.23 � 0.03 for � Cep and hence an absolute magnitude MV = � 3.47 � 0.10. Adopting an average V magnitude, hVi = 15.03 � 0.03, for Cepheids with log P = 0.73 in the large Magellanic Cloud (LMC) from Udalski et al., we find a V-band distance modulus for the LMC, mM = 18.50 � 0.13, or 18.58 � 0.15, where the lat- ter value results from a highly uncertain metallicity correction. These agree with our previous RR Lyr HST parallax-based determination of the distance modulus of the LMC.


The Astrophysical Journal | 2005

Dynamical Masses for Low-Mass Pre-Main-Sequence Stars: A Preliminary Physical Orbit for HD 98800 B

Andrew F. Boden; Anneila I. Sargent; R. L. Akeson; John M. Carpenter; Guillermo Torres; David W. Latham; David R. Soderblom; Ed Nelan; Otto G. Franz; Lawrence H. Wasserman

We report on Keck Interferometer observations of the double-lined binary (B) component of the quadruple pre-main-sequence (PMS) system HD 98800. With these interferometric observations, combined with astrometric measurements made by the Hubble Space Telescope (HST) Fine Guidance Sensors (FGS) and published radial velocity observations, we have estimated preliminary visual and physical orbits of the HD 98800 B subsystem. Our orbit model calls for an inclination of 668 ± 32 and allows us to infer the masses and luminosities of the individual components. In particular we find component masses of 0.699 ± 0.064 and 0.582 ± 0.051 M☉ for the Ba (primary) and Bb (secondary) components, respectively. Spectral energy distribution (SED) modeling of the B subsystem suggests that the B circumstellar material is a source of extinction along the line of sight to the B components. This seems to corroborate a conjecture by Tokovinin that the B subsystem is viewed through circumbinary material, but it raises important questions about the morphology of that circumbinary material. Our modeling of the subsystem component SEDs finds temperatures and luminosities in agreement with previous studies, and coupled with the component mass estimates allows for comparison with PMS models in the low-mass regime with few empirical constraints. Solar abundance models seem to underpredict the inferred component temperatures and luminosities, while assuming slightly subsolar abundances brings the models and observations into better agreement. The current preliminary orbit does not yet place significant constraints on existing PMS stellar models, but prospects for additional observations improving the orbit model and component parameters are very good.


Icarus | 1987

The size, shape, density, and Albedo of Ceres from its occultation of BD+8°471

Robert L. Millis; Lawrence H. Wasserman; Otto G. Franz; Ralph A. Nye; R.C. Oliver; T.J. Kreidl; S.E. Jones; William B. Hubbard; Larry A. Lebofsky; Robert F. Goff; Robert Louis Marcialis; Mark V. Sykes; J. Frecker; Donald M. Hunten; B. Zellner; H. Reitsema; Glenn Schneider; E. Dunham; J. Klavetter; Karen J. Meech; T. Oswalt; J. Rafert; E. Strother; J. Smith; H. Povenmire; B. Jones; D. Kornbluh; L. Reed; K. Izor; Michael F. A'Hearn

The occultation of BD+8°471 by Ceres on 13 November 1984 was observed photoelectrically at 13 sites in Mexico, Florida, and the Caribbean. These observations indicate that Ceres is an oblate spheroid having an equatorial radius of 479.6±2.4 km and a polar radius of 453.4±4.5 km. The mean density of this minor planet is 2.7 g/cm3±5%, and its visual geometric albedo is 0.073. While the surface appears globally to be in hydrostatic equilibrium, firm evidence of real limb irregularities is seen in the data.


The Astronomical Journal | 1999

Interferometric Astrometry of Proxima Centauri and Barnard's Star Using HUBBLE SPACE TELESCOPE Fine Guidance Sensor 3: Detection Limits for Substellar Companions

G. Fritz Benedict; Barbara E. McArthur; David Wayne Chappell; Edmund P. Nelan; William Hamilton Jefferys; W. F. van Altena; J. T. Lee; D. W. Cornell; Peter John Shelus; Paul D. Hemenway; Otto G. Franz; L. H. Wasserman; Raynor L. Duncombe; Darrell B. Story; A. L. Whipple; Laurence W. Fredrick

We report on a substellar-companion search utilizing interferometric fringe-tracking astrometry acquired with Fine Guidance Sensor 3 on the Hubble Space Telescope. Our targets were Proxima Centauri and Barnards star. We obtain absolute parallax values of πabs = 07687 ± 00003 for Proxima Cen and πabs = 05454 ± 00003 for Barnards star. Once low-amplitude instrumental systematic errors are identified and removed, our companion detection sensitivity is less than or equal to one Jupiter mass for periods longer than 60 days for Proxima Cen. Between the astrometry and the recent radial velocity results of Kurster et al., we exclude all companions with M > 0.8MJup for the range of periods 1 day < P < 1000 days. For Barnards star, our companion detection sensitivity is less than or equal to one Jupiter mass for periods longer than 150 days. Our null results for Barnards star are consistent with those reported by Gatewood in 1995.


The Astrophysical Journal | 1998

HD 98800: A unique stellar system of post-T tauri stars

David R. Soderblom; Jeremy R. King; Lionel Siess; Keith S. Noll; Diane Gilmore; Todd J. Henry; Edmund P. Nelan; Christopher J. Burrows; Robert A. Brown; M. A. C. Perryman; G. Fritz Benedict; B. J. McArthur; Otto G. Franz; Laurence H. Wasserman; Burton F. Jones; David W. Latham; Guillermo Torres; Robert P. Stefanik

HD 98800 is a system of four stars, and it has a large infrared excess that is thought to be due to a dust disk within the system. In this paper we present new astrometric observations made with Hipparcos, as well as photometry from Hubble Space Telescope WFPC2 images. Combining these observations and reanalyzing previous work allow us to estimate the age and masses of the stars in the system. Uncertainty in these ages and masses results from uncertainty in the temperatures of the stars and any reddening they may have. We find that HD 98800 is most probably about 10 Myr old, although it may be as young as 5 Myr or as old as 20 Myr old. The stars in HD 98800 appear to have metallicities that are about solar. An age of 10 Myr means that HD 98800 is a member of the post T Tauri class of objects, and we argue that the stars in HD 98800 can help us understand why post T Tauris have been so elusive, HD 98800 may have formed in the Centaurus star-forming region, but it is extraordinary in being so young and yet so far from where it was born.


The Astronomical Journal | 2000

ICCD SPECKLE OBSERVATIONS OF BINARY STARS. XXIII. MEASUREMENTS DURING 1982¨1997 FROM SIX TELESCOPES, WITH 14 NEW ORBITS

William I. Hartkopf; Brian D. Mason; Harold A. McAlister; Lewis C. Roberts; Nils H. Turner; Theo A. ten Brummelaar; C. Prieto; J. F. Ling; Otto G. Franz

We present 2017 observations of 1286 binary stars, observed by means of speckle interferometry using six telescopes over a 15 year period from 1982 April to 1997 June. These measurements constitute the 23d installment in CHARAs speckle program at 2 to 4 m class telescopes and include the second major collection of measurements from the Mount Wilson 100 inch (2.5 m) Hooker Telescope. Orbital elements are also presented for 14 systems, seven of which have had no previously published orbital analyses.


The Astronomical Journal | 1998

Photometry of Proxima Centauri and Barnard's Star Using Hubble Space Telescope Fine Guidance Sensor 3: A Search for Periodic Variations

G. Fritz Benedict; Barbara E. McArthur; Edmund P. Nelan; Darrell B. Story; A. L. Whipple; Peter John Shelus; William Hamilton Jefferys; Paul D. Hemenway; Otto G. Franz; L. H. Wasserman; Raynor L. Duncombe; W. F. van Altena; Laurence W. Fredrick

We have observed Proxima Centauri and Barnards star with the Hubble Space Telescope Fine Guidance Sensor 3. Proxima Cen exhibits small-amplitude, periodic photometric variations. Once several sources of systematic photometric error are corrected, we obtain 2 mmag internal photometric precision. We identify two distinct behavior modes over the past 4 years: higher amplitude, longer period and smaller amplitude, shorter period. Within the errors, one period (P ~ 83 days) is twice the other. Barnards star shows very weak evidence for periodicity on a timescale of approximately 130 days. If we interpret these periodic phenomena as rotational modulation of starspots, we identify three discrete spots on Proxima Cen and possibly one spot on Barnards star. We find that the disturbances change significantly on timescales as short as one rotation period.


arXiv: Astrophysics | 1998

Photometry of Proxima Centauri and Barnard's Star Using HST Fine Guidance Sensor 3: A Search for Periodic Variations

G. Fritz Benedict; Barbara E. McArthur; Edmund P. Nelan; Darrell B. Story; A. L. Whipple; Peter John Shelus; William Hamilton Jefferys; Paul D. Hemenway; Otto G. Franz; L. H. Wasserman; Raynor L. Duncombe; Wm. van Altena; Laurence W. Fredrick

We have observed Proxima Centauri and Barnards star with the Hubble Space Telescope Fine Guidance Sensor 3. Proxima Cen exhibits small-amplitude, periodic photometric variations. Once several sources of systematic photometric error are corrected, we obtain 2 mmag internal photometric precision. We identify two distinct behavior modes over the past 4 years: higher amplitude, longer period and smaller amplitude, shorter period. Within the errors, one period (P ~ 83 days) is twice the other. Barnards star shows very weak evidence for periodicity on a timescale of approximately 130 days. If we interpret these periodic phenomena as rotational modulation of starspots, we identify three discrete spots on Proxima Cen and possibly one spot on Barnards star. We find that the disturbances change significantly on timescales as short as one rotation period.


Nature | 1998

Global warming on Triton

James L. Elliot; Heidi B. Hammel; L. H. Wasserman; Otto G. Franz; S. W. McDonald; Catherine B. Olkin; Edward W. Dunham; John R. Spencer; John A. Stansberry; Marc William Buie; Jay M. Pasachoff; B. A. Babcock; T. H. McConnochie

Triton, Neptunes largest moon, has been predicted to undergo significant seasonal changes that would reveal themselves as changes in its mean frost temperature. But whether this temperature should at the present time be increasing, decreasing or constant depends on a number of parameters (such as the thermal properties of the surface, and frost migration patterns) that are unknown. Here we report observations of a recent stellar occultation by Triton which, when combined with earlier results, show that Triton has undergone a period of global warming since 1989. Our most conservative estimates of the rate of temperature and surface-pressure increase during this period imply that the atmosphere is doubling in bulk every 10 years—significantly faster than predicted by any published frost model for Triton,. Our result suggests that permanent polar caps on Triton play a dominant role in regulating seasonal atmospheric changes. Similar processes should also be active on Pluto.

Collaboration


Dive into the Otto G. Franz's collaboration.

Top Co-Authors

Avatar

Edmund P. Nelan

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar

G. Fritz Benedict

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Peter John Shelus

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Darrell B. Story

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Raynor L. Duncombe

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. L. Whipple

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Paul D. Hemenway

University of Rhode Island

View shared research outputs
Researchain Logo
Decentralizing Knowledge