Oussama Karroum
Université catholique de Louvain
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Oussama Karroum.
Cancer Research | 2014
Damya Laoui; Eva Van Overmeire; Giusy Di Conza; Chiara Aldeni; Jiri Keirsse; Yannick Morias; Kiavash Movahedi; Isabelle Houbracken; Elio Schouppe; Yvon Elkrim; Oussama Karroum; Bénédicte F. Jordan; Peter Carmeliet; Conny Gysemans; Patrick De Baetselier; Massimiliano Mazzone; Jo A. Van Ginderachter
Tumor-associated macrophages (TAM) are exposed to multiple microenvironmental cues in tumors, which collaborate to endow these cells with protumoral activities. Hypoxia, caused by an imbalance in oxygen supply and demand because of a poorly organized vasculature, is often a prominent feature in solid tumors. However, to what extent tumor hypoxia regulates the TAM phenotype in vivo is unknown. Here, we show that the myeloid infiltrate in mouse lung carcinoma tumors encompasses two morphologically distinct CD11b(hi)F4/80(hi)Ly6C(lo) TAM subsets, designated as MHC-II(lo) and MHC-II(hi) TAM, both of which were derived from tumor-infiltrating Ly6C(hi) monocytes. MHC-II(lo) TAM express higher levels of prototypical M2 markers and reside in more hypoxic regions. Consequently, MHC-II(lo) TAM contain higher mRNA levels for hypoxia-regulated genes than their MHC-II(hi) counterparts. To assess the in vivo role of hypoxia on these TAM features, cancer cells were inoculated in prolyl hydroxylase domain 2 (PHD2)-haplodeficient mice, resulting in better-oxygenated tumors. Interestingly, reduced tumor hypoxia did not alter the relative abundance of TAM subsets nor their M2 marker expression, but specifically lowered hypoxia-sensitive gene expression and angiogenic activity in the MHC-II(lo) TAM subset. The same observation in PHD2(+/+) → PHD2(+/-) bone marrow chimeras also suggests organization of a better-oxygenized microenvironment. Together, our results show that hypoxia is not a major driver of TAM subset differentiation, but rather specifically fine-tunes the phenotype of M2-like MHC-II(lo) TAM.
Cancer Research | 2012
Caroline Diepart; Oussama Karroum; Julie Magat; Olivier Feron; Julien Verrax; Pedro Buc Calderon; Vincent Grégoire; Philippe Leveque; Julie Stockis; Nicolas Dauguet; Bénédicte F. Jordan; Bernard Gallez
Arsenic trioxide (As(2)O(3)) is an effective therapeutic against acute promyelocytic leukemia and certain solid tumors. Because As(2)O(3) inhibits mitochondrial respiration in leukemia cells, we hypothesized that As(2)O(3) might enhance the radiosensitivity of solid tumors by increasing tumor oxygenation [partial pressure of oxygen (pO(2))] via a decrease in oxygen consumption. Two murine models of radioresistant hypoxic cancer were used to study the effects of As(2)O(3). We measured pO(2) and the oxygen consumption rate in vivo by electron paramagnetic resonance oximetry and (19)fluorine-MRI relaxometry. Tumor perfusion was assessed by Patent blue staining. In both models, As(2)O(3) inhibited mitochondrial respiration, leading to a rapid increase in pO(2). The decrease in oxygen consumption could be explained by an observed decrease in glutathione in As(2)O(3)-treated cells, as this could increase intracellular reactive oxygen species that can disrupt mitochondrial membrane potential. When tumors were irradiated during periods of As(2)O(3)-induced augmented oxygenation, radiosensitivity increased by 2.2-fold compared with control mice. Notably, this effect was abolished when temporarily clamped tumors were irradiated. Together, our findings show that As(2)O(3) acutely increases oxygen consumption and radiosensitizes tumors, providing a new rationale for clinical investigations of As(2)O(3) in irradiation protocols to treat solid tumors.
Cancer Letters | 2010
Bénédicte F. Jordan; Julie Peeterbroeck; Oussama Karroum; Caroline Diepart; Julie Magat; Vincent Grégoire; Bernard Gallez
In an effort to improve the issue of radiotherapy treatments, we tested whether S-nitrosocaptopril, a molecule combining a NO donor and an angiotensin converting enzyme inhibitor (ACE inhibitor), could temporarily improve the hemodynamic status of experimental tumors. We monitored the effect of S-nitrosocaptopril in TLT tumors using non rinvasive magnetic resonance techniques. We identified a time window during which tumor oxygenation was improved, as a result of a combined effect on tumor blood flow and oxygen consumption. Consequently, the administration of S-nitrosocaptopril contributed to the increase in efficacy of radiation therapy, an effect that was not observed with captopril alone.
PLOS ONE | 2012
Fabienne Danhier; Pierre Danhier; Nicolas Magotteaux; Géraldine De Preter; Bernard Ucakar; Oussama Karroum; Bénédicte F. Jordan; Bernard Gallez; Véronique Préat
Background Paclitaxel (PTX) is a potent anti-cancer chemotherapeutic agent and is widely used in the treatments of solid tumors, particularly of the breast and ovaries. An effective and safe micellar formulation of PTX was used to administer higher doses of PTX than Taxol® (the current commercialized drug). We hypothesize that PTX-loaded micelles (M-PTX) may enhance tumor radiosensitivity by increasing the tumor oxygenation (pO2). Our goals were (i) to evaluate the contribution of the “oxygen effect” to the radiosensitizing effect of PTX; (ii) to demonstrate the therapeutic relevance of the combination of M-PTX and irradiation and (iii) to investigate the underlying mechanisms of the observed oxygen effect. Methodology and Principal Findings We used (PEG-p-(CL-co-TMC)) polymeric micelles to solubilize PTX. pO2 was measured on TLT tumor-bearing mice treated with M-PTX (80 mg/kg) using electron paramagnetic resonance (EPR) oximetry. The regrowth delay following 10 Gy irradiation 24 h after M-PTX treatment was measured. The tumor perfusion was assessed by the patent blue staining. The oxygen consumption rate and the apoptosis were evaluated by EPR oximetry and the TUNEL assay, respectively. EPR oximetry experiments showed that M-PTX dramatically increases the pO2 24 h post treatment. Regrowth delay assays demonstrated a synergy between M-PTX and irradiation. M-PTX increased the tumor blood flow while cells treated with M-PTX consumed less oxygen and presented more apoptosis. Conclusions M-PTX improved the tumor oxygenation which leads to synergy between this treatment and irradiation. This increased pO2 can be explained both by an increased blood flow and an inhibition of O2 consumption.
Radiotherapy and Oncology | 2014
Ly Binh An Tran; Anne Bol; Daniel Labar; Oussama Karroum; Vanesa Bol; Bénédicte F. Jordan; Vincent Grégoire; Bernard Gallez
BACKGROUND AND PURPOSE Hypoxia-driven intervention (oxygen manipulation or dose escalation) could overcome radiation resistance linked to tumor hypoxia. Here, we evaluated the value of hypoxia imaging using (18)F-FAZA PET to predict the outcome and guide hypoxia-driven interventions. MATERIAL AND METHODS Two hypoxic rat tumor models were used: rhabdomyosarcoma and 9L-glioma. For the irradiated groups, the animals were divided into two subgroups: breathing either room air or carbogen. (18)F-FAZA PET images were obtained just before the irradiation to monitor the hypoxic level of each tumor. Absolute pO2 were also measured using EPR oximetry. Dose escalation was used in Rhabdomyosarcomas. RESULTS For 9L-gliomas, a significant correlation between (18)F-FAZA T/B ratio and tumor growth delay was found; additionally, carbogen breathing dramatically improved the tumor response to irradiation. On the contrary, Rhabdomyosarcomas were less responsive to hyperoxic challenge. For that model, an increase in growth delay was observed using dose escalation, but not when combining irradiation with carbogen. CONCLUSIONS (18)F-FAZA uptake may be prognostic of outcome following radiotherapy and could assess the response of tumor to carbogen breathing. (18)F-FAZA PET may help to guide the hypoxia-driven intervention with irradiation: carbogen breathing in responsive tumors or dose escalation in tumors non-responsive to carbogen.
British Journal of Cancer | 2013
Emmanuel Seront; Romain Boidot; Caroline Bouzin; Oussama Karroum; Bénédicte F. Jordan; Bernard Gallez; Jean-Pascal Machiels; Olivier Feron
Background:Hypoxia can activate autophagy, a self-digest adaptive process that maintains cell turnover. Mammalian target of rapamycin (mTOR) inhibitors are used to treat cancer but also stimulate autophagy.Methods:Human mammary cancer cells and derived xenografts were used to examine whether hypoxia could exacerbate autophagy-mediated resistance to the mTOR inhibitor rapamycin.Results:Rapamycin exerted potent antitumour effects in MCF-7 and MDA-MB-231 mammary tumours through a marked inhibition of angiogenesis, but the autophagy inhibitor chloroquine (CQ) failed to further sensitise tumours to mTOR inhibition. Rapamycin treatment actually led to tumour reoxygenation, thereby preventing the development of autophagy. Chloroquine alone, however, blocked the growth of MCF-7 tumours and in vitro blunted the hypoxia-induced component of autophagy in these cells. Finally, when initiating CQ treatment in large, hypoxic tumours, a robust antitumour effect could be observed, which also further increased the antiproliferative effects of rapamycin.Conclusion:The mTOR inhibitor rapamycin significantly contributes to tumour growth inhibition and normalisation of the tumour vasculature through potent antiangiogenic effects. The resulting reduction in hypoxia accounts for a lack of sensitisation by the autophagy inhibitor CQ, except if the tumours are already at an advanced stage, and thus largely hypoxic at the initiation of the combination of rapamycin and CQ treatment.
Radiotherapy and Oncology | 2012
Oussama Karroum; Julie Kengen; Pierre Danhier; Julie Magat; Lionel Mignion; Caroline Bouzin; Julien Verrax; Nicolas Charette; Peter Stärkel; Pedro Buc Calderon; Pierre Sonveaux; Oliver Feron; Vincent Grégoire; Bernard Gallez; Bénédicte F. Jordan
BACKGROUND AND PURPOSE The relevance of Mitogen Activated Protein Kinase (MAPK) inhibitors as co-treatments for radiation therapy is investigated, with special focus on a potential link between the MAPK pathway and tumor hypoxia, which is a critical determinant for response to therapy. MATERIALS AND METHODS The effects of two MAPK inhibitors, Sorafenib and PD0325901, were monitored daily using in vivo EPR (Electron Paramagnetic Resonance) oximetry in FSaII and TLT tumor models in order to identify a window of reoxygenation, during which tumor blood flow, oxygen consumption and radiation sensitivity were assessed. RESULTS Reoxygenation was shown after two days of treatments with Sorafenib or PD0325901 in two tumor models, which was further successfully exploited with Sorafenib for improving the radiation response of FSaII tumors by a factor of 1.5. The increase in tumor oxygenation was shown to be the result of two major factors: (i) an increase in blood flow for Sorafenib, that might be linked to its anti-angiogenic effect (vascular normalization), and (ii) a decrease in oxygen consumption for Sorafenib and PD0325901, due to an alteration of the mitochondrial activity. CONCLUSION We evidenced tumor reoxygenation in vivo following MAPK inhibition and suggest a rationale for the combination of radiation therapy with Sorafenib.
Seminars in Radiation Oncology | 2013
Pierre Danhier; Christophe De Saedeleer; Oussama Karroum; Géraldine De Preter; Paolo E. Porporato; Bénédicte F. Jordan; Bernard Gallez; Pierre Sonveaux
Most solid tumors are characterized by unstable perfusion patterns, creating regions of hypoxia that are detrimental to radiotherapy treatment response. Because postsurgical radiotherapy, alone or in combination with other interventions, is a first-line treatment for many malignancies, strategies aimed at homogeneously increasing tumor pO2 have been the focus of intense research over the past decades. Among other approaches of demonstrable clinical and preclinical utility, this review focuses on those directly targeting oxygen consumption to redirect oxygen from a metabolic fate to the stabilization of radiation-induced DNA damage, more particularly drugs targeting glucose and lactate metabolism, nitric oxide donors or inducers, and mitogen-activated protein kinase pathway inhibitors. Their utility as adjuvant treatments with radiotherapy has been proven preclinically, which should foster further their clinical development and evaluation.
Contrast Media & Molecular Imaging | 2013
Oussama Karroum; Lionel Mignion; Julie Kengen; Linda Karmani; Philippe Leveque; Pierre Danhier; Julie Magat; Anne Bol; Daniel Labar; Vincent Grégoire; Caroline Bouzin; Olivier Feron; Bernard Gallez; Bénédicte F. Jordan
The purpose of this study was to determine the value of different imaging modalities, that is, magnetic resonance imaging/spectroscopy (MRI/MRS) and positron emission tomography (PET), to assess early tumor response to sorafenib with or without radiotherapy. Diffusion-weighted (DW)-MRI, choline (1)H MRS at 11.7 T, and (18)F-FLT PET imaging were used to image fibrosarcoma (FSaII) tumor-bearing mice over time. The imaging markers were compared with apoptosis cell death and cell proliferation measurements assessed by histology. Anti-proliferative effects of sorafenib were evidenced by (1)H MRS and (18)F-FLT PET after 2 days of treatment with sorafenib, with no additional effect of the combination with radiation therapy, results that are in agreement with Ki67 staining. Apparent diffusion coefficient calculated using DW-MRI was not modified after 2 days of treatment with sorafenib, but showed significant increase 24 h after 2 days of sorafenib treatment combined with consecutive irradiation. The three imaging markers were able to show early tumor response as soon as 24 h after treatment initiation, with choline MRS and (18)F-FLT being sensitive to sorafenib in monotherapy as well as in combined therapy with irradiation, whereas DW-MRI was only sensitive to the combination of sorafenib with radiotherapy.
NMR in Biomedicine | 2014
Anne-Catherine Fruytier; Julie Magat; Marie-Aline Neveu; Oussama Karroum; Caroline Bouzin; Olivier Feron; Bénédicte F. Jordan; Greg O. Cron; Bernard Gallez
Dynamic contrast‐enhanced (DCE)‐MRI is useful to assess the early effects of drugs acting on tumor vasculature, namely anti‐angiogenic and vascular disrupting agents. Ultra‐high‐field MRI allows higher‐resolution scanning for DCE‐MRI while maintaining an adequate signal‐to‐noise ratio. However, increases in susceptibility effects, combined with decreases in longitudinal relaxivity of gadolinium‐based contrast agents (GdCAs), make DCE‐MRI more challenging at high field. The aim of this work was to explore the feasibility of using DCE‐MRI at 11.7 T to assess the tumor hemodynamics of mice. Three GdCAs possessing different molecular weights (gadoterate: 560 Da, 0.29 mmol Gd/kg; p846: 3.5 kDa, 0.10 mmol Gd/kg; and p792: 6.47 kDa, 0.15 mmol Gd/kg) were compared to see the influence of the molecular weight in the highlight of the biologic effects induced by combretastatin A4 (CA4).