Outi Kopra
University of Helsinki
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Outi Kopra.
Nature Genetics | 2006
Mira Kyttälä; Jonna Tallila; Riitta Salonen; Outi Kopra; Nicolai Kohlschmidt; Paulina Paavola-Sakki; Leena Peltonen; Marjo Kestilä
Meckel syndrome (MKS) is a severe fetal developmental disorder reported in most populations. The clinical hallmarks are occipital meningoencephalocele, cystic kidney dysplasia, fibrotic changes of the liver and polydactyly. Here we report the identification of a gene, MKS1, mutated in MKS families linked to 17q. Mks1 expression in mouse embryos, as determined by in situ hybridization, agrees well with the tissue phenotype of MKS. Comparative genomics and proteomics data implicate MKS1 in ciliary functions.
Nature Genetics | 2005
Anna-Kaisa Anttonen; Ibrahim Mahjneh; Riikka H. Hämäläinen; Clotilde Lagier-Tourenne; Outi Kopra; Laura Waris; Mikko Anttonen; Tarja Joensuu; Hannu Kalimo; Anders Paetau; Lisbeth Tranebjærg; Denys Chaigne; Michel Koenig; Orvar Eeg-Olofsson; Bjarne Udd; Mirja Somer; Hannu Somer; Anna-Elina Lehesjoki
We identified the gene underlying Marinesco-Sjögren syndrome, which is characterized by cerebellar ataxia, progressive myopathy and cataracts. We identified four disease-associated, predicted loss-of-function mutations in SIL1, which encodes a nucleotide exchange factor for the heat-shock protein 70 (HSP70) chaperone HSPA5. These data, together with the similar spatial and temporal patterns of tissue expression of Sil1 and Hspa5, suggest that disturbed SIL1-HSPA5 interaction and protein folding is the primary pathology in Marinesco-Sjögren syndrome.
Cell Metabolism | 2012
Kati Ahlqvist; Riikka H. Hämäläinen; Shuichi Yatsuga; Marko Uutela; Mügen Terzioglu; Alexandra Götz; Saara Forsström; Petri Salven; Alexandre Angers-Loustau; Outi Kopra; Henna Tyynismaa; Nils-Göran Larsson; Kirmo Wartiovaara; Tomas A. Prolla; Aleksandra Trifunovic; Anu Suomalainen
Somatic stem cell (SSC) dysfunction is typical for different progeroid phenotypes in mice with genomic DNA repair defects. MtDNA mutagenesis in mice with defective Polg exonuclease activity also leads to progeroid symptoms, by an unknown mechanism. We found that Polg-Mutator mice had neural (NSC) and hematopoietic progenitor (HPC) dysfunction already from embryogenesis. NSC self-renewal was decreased in vitro, and quiescent NSC amounts were reduced in vivo. HPCs showed abnormal lineage differentiation leading to anemia and lymphopenia. N-acetyl-L-cysteine treatment rescued both NSC and HPC abnormalities, suggesting that subtle ROS/redox changes, induced by mtDNA mutagenesis, modulate SSC function. Our results show that mtDNA mutagenesis affected SSC function early but manifested as respiratory chain deficiency in nondividing tissues in old age. Deletor mice, having mtDNA deletions in postmitotic cells and no progeria, had normal SSCs. We propose that SSC compartment is sensitive to mtDNA mutagenesis, and that mitochondrial dysfunction in SSCs can underlie progeroid manifestations.
The Journal of Comparative Neurology | 2003
Laura Ahtiainen; Otto P. van Diggelen; Anu Jalanko; Outi Kopra
Palmitoyl protein thioesterase 1 (PPT1) is a depalmitoylating enzyme whose deficiency leads to infantile neuronal ceroid lipofuscinosis. The disease is characterized by early loss of vision and massive neuronal death. Although PPT1 is expressed in many tissues, a deficiency of PPT1 damages neurons only in the cerebral and cerebellar cortexes and retina; other cell types remain relatively unaffected. We previously demonstrated that PPT1 is present in the synaptosomes and synaptic vesicles of neurons. To understand the crucial role of PPT1 for neuronal cells, we further investigated the expression and targeting of PPT1 in retinal, hippocampal, and cortical neurons during their maturation in culture. We found that PPT1 activity increases by neuronal maturation and is highest in retinal neuron cultures. In retinal neurons the expression of PPT1 precedes that of the synaptic vesicle protein 2 and synaptophysin, indicating a significant role for PPT1 in the early development of neuronal cells. We also found by quantitative confocal immunofluorescence microscopy that PPT1 is targeted preferably to axons in mature neurons, as indicated by its colocalization with the axonal marker microtubule‐associated protein 1. In axons PPT1 is targeted specifically to axonal varicosities and presynaptic terminals, as indicated by its significant colocalization with growth‐associated protein 43 and synaptophysin. Axonal localization of PPT1 was confirmed by double labeling with synaptophysin and postembedding immunoelectron microscopy. The polarized axonal targeting of PPT1 may well indicate a role for PPT1 in the exocytotic pathway of neurons. J. Comp. Neurol. 455:368–377, 2003.
The Journal of Neuroscience | 2009
Maria K. Lehtinen; Saara Tegelberg; Hyman M. Schipper; Haixiang Su; Hillel Zukor; Otto Manninen; Outi Kopra; Tarja Joensuu; Paula Hakala; Azad Bonni; Anna-Elina Lehesjoki
The progressive myoclonus epilepsies, featuring the triad of myoclonus, seizures, and ataxia, comprise a large group of inherited neurodegenerative diseases that remain poorly understood and refractory to treatment. The Cystatin B gene is mutated in one of the most common forms of progressive myoclonus epilepsy, Unverricht–Lundborg disease (EPM1). Cystatin B knockout in a mouse model of EPM1 triggers progressive degeneration of cerebellar granule neurons. Here, we report impaired redox homeostasis as a key mechanism by which Cystatin B deficiency triggers neurodegeneration. Oxidative stress induces the expression of Cystatin B in cerebellar granule neurons, and EPM1 patient-linked mutation of the Cystatin B gene promoter impairs oxidative stress induction of Cystatin B transcription. Importantly, Cystatin B knockout or knockdown sensitizes cerebellar granule neurons to oxidative stress-induced cell death. The Cystatin B deficiency-induced predisposition to oxidative stress in neurons is mediated by the lysosomal protease Cathepsin B. We uncover evidence of oxidative damage, reflected by depletion of antioxidants and increased lipid peroxidation, in the cerebellum of Cystatin B knock-out mice in vivo. Collectively, our findings define a pathophysiological mechanism in EPM1, whereby Cystatin B deficiency couples oxidative stress to neuronal death and degeneration, and may thus provide the basis for novel treatment approaches for the progressive myoclonus epilepsies.
Neurobiology of Disease | 2005
Anu Jalanko; Jouni Vesa; Tuula Manninen; Carina von Schantz; Helena Minye; Anna-Liisa Fabritius; Tarja Salonen; Juhani Rapola; Massimiliano Gentile; Outi Kopra; Leena Peltonen
Infantile Neuronal Ceroid Lipofuscinosis (INCL) results from mutations in the palmitoyl protein thioesterase (PPT1, CLN1) gene and is characterized by dramatic death of cortical neurons. We generated Ppt1Deltaex4 mice by a targeted deletion of exon 4 of the mouse Ppt1 gene. Similar to the clinical phenotype, the homozygous mutants show loss of vision from the age of 8 weeks, seizures after 4 months and paralysis of hind limbs at the age of 5 months. Autopsy revealed a dramatic loss of brain mass and histopathology demonstrated accumulation of autofluorescent granular osmiophilic deposits (GRODS), both characteristic of INCL. At 6 months, the homozygous Ppt1Deltaex4 mice showed a prominent loss of GABAergic interneurons in several brain areas. The transcript profiles of wild-type and mutant mouse brains revealed that most prominent alterations involved parts of the immune response, implicating alterations similar to those of the aging brain and neurodegeneration. These findings make the Ppt1Deltaex4 mouse an interesting model for the inflammation-associated death of interneurons.
Journal of Neuroscience Research | 2006
Kaisu Luiro; Outi Kopra; Tomas Blom; Massimiliano Gentile; Hannah M. Mitchison; Iiris Hovatta; Kid Törnquist; Anu Jalanko
Intracellular pathways leading to neuronal degeneration are poorly understood in the juvenile neuronal ceroid lipofuscinosis (JNCL, Batten disease), caused by mutations in the CLN3 gene. To elucidate the early pathology, we carried out comparative global transcript profiling of the embryonic, primary cultures of the Cln3−/− mouse neurons. Statistical and functional analyses delineated three major cellular pathways or compartments affected: mitochondrial glucose metabolism, cytoskeleton, and synaptosome. Further functional studies showed a slight mitochondrial dysfunction and abnormalities in the microtubule cytoskeleton plus‐end components. Synaptic dysfunction was also indicated by the pathway analysis, and by the gross upregulation of the G protein beta 1 subunit, known to regulate synaptic transmission via the voltage‐gated calcium channels. Intracellular calcium imaging showed a delay in the recovery from depolarization in the Cln3−/− neurons, when the N‐type Ca2+ channels had been blocked. The data suggests a link between the mitochondrial dysfunction and cytoskeleton‐mediated presynaptic inhibition, thus providing a foundation for further investigation of the disease mechanism underlying JNCL disease.
Neurobiology of Disease | 2005
Anna Kiialainen; Karine Hovanes; Juha Paloneva; Outi Kopra; Leena Peltonen
Polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy (PLOSL) is a recessively inherited disease characterized by early onset dementia associated with bone cysts. Our group has recently established the molecular background of PLOSL by identifying mutations in DAP12 and TREM2 genes. To understand how loss of function of the immune cell activating DAP12/TREM2 signaling complex leads to dementia and loss of myelin, we have analyzed here Dap12 and Trem2 expression in the mouse CNS. We show that Dap12 and Trem2 are expressed from embryonic stage to adulthood, and demonstrate a highly similar expression pattern. In addition, we identify microglial cells and oligodendrocytes as the major Dap12/Trem2-producing cells in the CNS and, consequently, as the predominant cell types involved in PLOSL pathogenesis. These findings provide a good starting point for the study of the molecular mechanisms of this inherited dementia and new evidence for the involvement of the immune system in neuronal degeneration.
Neurobiology of Disease | 2004
Ville Holmberg; Anu Jalanko; Juha Isosomppi; Anna-Liisa Fabritius; Leena Peltonen; Outi Kopra
Neuronal ceroid lipofuscinoses (NCLs) are recessively inherited neurodegenerative lysosomal storage disorders characterized by progressive motor and mental retardation, visual failure, and epileptic seizures. Finnish variant late infantile NCL (vLINCL(Fin)) is caused by mutations in the CLN5 gene. We have isolated the mouse Cln5 gene and analyzed its spatiotemporal expression in the central nervous system (CNS) by in situ hybridization and immunohistochemistry. Cln5 was expressed throughout the embryonic brain already at E15 and the expression steadily increased during development. Prominent expression was observed in cerebellar Purkinje cells, cerebral neurons, hippocampal pyramidal cells, and hippocampal interneurons. The expression pattern correlated with those CNS regions that get degenerated in CLN5 patients. In vitro expression of Cln5 in COS-1, HeLa, and neuronal cells further implied that mouse Cln5 is a soluble lysosomal glycoprotein, closely resembling human CLN5.
Human Molecular Genetics | 2008
Annina Lyly; Sanna Marjavaara; Kristiina Uusi-Rauva; Kaisu Luiro; Outi Kopra; Laurent O. Martinez; Kimmo Tanhuanpää; Nisse Kalkkinen; Anu Suomalainen; Matti Jauhiainen; Anu Jalanko
Infantile neuronal ceroid lipofuscinosis (INCL) is a severe neurodegenerative disease caused by deficiency of palmitoyl protein thioesterase 1 (PPT1). INCL results in dramatic loss of thalamocortical neurons, but the disease mechanism has remained elusive. In the present work we describe the first interaction partner of PPT1, the F(1)-complex of the mitochondrial ATP synthase, by co-purification and in vitro-binding assays. In addition to mitochondria, subunits of F(1)-complex have been reported to localize in the plasma membrane, and to be capable of acting as receptors for various ligands such as apolipoprotein A-1. We verified here the plasma membrane localization of F(1)-subunits on mouse primary neurons and fibroblasts by cell surface biotinylation and TIRF-microscopy. To gain further insight into the Ppt1-mediated properties of the F(1)-complex, we utilized the Ppt1-deficient Ppt1(Delta ex4) mice. While no changes in the mitochondrial function could be detected in the brain of the Ppt1(Delta ex4) mice, the levels of F(1)-subunits alpha and beta on the plasma membrane were specifically increased in the Ppt1(Delta ex4) neurons. Significant changes were also detected in the apolipoprotein A-I uptake by the Ppt1(Delta ex4) neurons and the serum lipid composition in the Ppt1(Delta ex4) mice. These data indicate neuron-specific changes for F(1)-complex in the Ppt1-deficient cells and give clues for a possible link between lipid metabolism and neurodegeneration in INCL.