Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Massimiliano Gentile is active.

Publication


Featured researches published by Massimiliano Gentile.


Science | 2011

MED12, the Mediator Complex Subunit 12 Gene, Is Mutated at High Frequency in Uterine Leiomyomas

Netta Mäkinen; Miika Mehine; Jaana Tolvanen; Eevi Kaasinen; Yilong Li; Heli J. Lehtonen; Massimiliano Gentile; Jian Yan; Martin Enge; Minna Taipale; Mervi Aavikko; Riku Katainen; Elina Virolainen; Tom Böhling; Taru A. Koski; Virpi Launonen; Jari Sjöberg; Jussi Taipale; Pia Vahteristo; Lauri A. Aaltonen

Uterine fibroids frequently harbor mutations in a specific gene that has been implicated in transcriptional regulation. Uterine leiomyomas, or fibroids, are benign tumors that affect millions of women worldwide and that can cause considerable morbidity. To study the genetic basis of this tumor type, we examined 18 uterine leiomyomas derived from 17 different patients by exome sequencing and identified tumor-specific mutations in the mediator complex subunit 12 (MED12) gene in 10. Through analysis of 207 additional tumors, we determined that MED12 is altered in 70% (159 of 225) of tumors from a total of 80 patients. The Mediator complex is a 26-subunit transcriptional regulator that bridges DNA regulatory sequences to the RNA polymerase II initiation complex. All mutations resided in exon 2, suggesting that aberrant function of this region of MED12 contributes to tumorigenesis.


Nature Genetics | 2004

Familial combined hyperlipidemia is associated with upstream transcription factor 1 ( USF1 )

Päivi Pajukanta; Heidi E. Lilja; Janet S Sinsheimer; Rita M. Cantor; Aldons J. Lusis; Massimiliano Gentile; Xiaoqun Joyce Duan; Aino Soro-Paavonen; Jussi Naukkarinen; Janna Saarela; Markku Laakso; Christian Ehnholm; Marja-Riitta Taskinen; Leena Peltonen

Familial combined hyperlipidemia (FCHL), characterized by elevated levels of serum total cholesterol, triglycerides or both, is observed in about 20% of individuals with premature coronary heart disease. We previously identified a locus linked to FCHL on 1q21–q23 in Finnish families with the disease. This region has also been linked to FCHL in families from other populations as well as to type 2 diabetes mellitus. These clinical entities have several overlapping phenotypic features, raising the possibility that the same gene may underlie the obtained linkage results. Here, we show that the human gene encoding thioredoxin interacting protein (TXNIP) on 1q, which underlies combined hyperlipidemia in mice, is not associated with FCHL. We show that FCHL is linked and associated with the gene encoding upstream transcription factor 1 (USF1) in 60 extended families with FCHL, including 721 genotyped individuals (P = 0.00002), especially in males with high triglycerides (P = 0.0000009). Expression profiles in fat biopsy samples from individuals with FCHL seemed to differ depending on their carrier status for the associated USF1 haplotype. USF1 encodes a transcription factor known to regulate several genes of glucose and lipid metabolism.


BMC Genomics | 2011

Chipster: user-friendly analysis software for microarray and other high-throughput data

M Aleksi Kallio; Jarno Tuimala; Taavi Hupponen; Petri Klemelä; Massimiliano Gentile; Mikko Koski; Janne Käki; Eija Korpelainen

BackgroundThe growth of high-throughput technologies such as microarrays and next generation sequencing has been accompanied by active research in data analysis methodology, producing new analysis methods at a rapid pace. While most of the newly developed methods are freely available, their use requires substantial computational skills. In order to enable non-programming biologists to benefit from the method development in a timely manner, we have created the Chipster software.ResultsChipster (http://chipster.csc.fi/) brings a powerful collection of data analysis methods within the reach of bioscientists via its intuitive graphical user interface. Users can analyze and integrate different data types such as gene expression, miRNA and aCGH. The analysis functionality is complemented with rich interactive visualizations, allowing users to select datapoints and create new gene lists based on these selections. Importantly, users can save the performed analysis steps as reusable, automatic workflows, which can also be shared with other users. Being a versatile and easily extendable platform, Chipster can be used for microarray, proteomics and sequencing data. In this article we describe its comprehensive collection of analysis and visualization tools for microarray data using three case studies.ConclusionsChipster is a user-friendly analysis software for high-throughput data. Its intuitive graphical user interface enables biologists to access a powerful collection of data analysis and integration tools, and to visualize data interactively. Users can collaborate by sharing analysis sessions and workflows. Chipster is open source, and the server installation package is freely available.


The New England Journal of Medicine | 2013

Characterization of Uterine Leiomyomas by Whole-Genome Sequencing

Miika Mehine; Eevi Kaasinen; Netta Mäkinen; Riku Katainen; Kati Kämpjärvi; Esa Pitkänen; Hanna-Riikka Heinonen; Ralf Bützow; Outi Kilpivaara; Anna Kuosmanen; Heikki Ristolainen; Massimiliano Gentile; Jari Sjöberg; Pia Vahteristo; Lauri A. Aaltonen

BACKGROUND Uterine leiomyomas are benign but affect the health of millions of women. A better understanding of the molecular mechanisms involved may provide clues to the prevention and treatment of these lesions. METHODS We performed whole-genome sequencing and gene-expression profiling of 38 uterine leiomyomas and the corresponding myometrium from 30 women. RESULTS Identical variants observed in some separate tumor nodules suggested that these nodules have a common origin. Complex chromosomal rearrangements resembling chromothripsis were a common feature of leiomyomas. These rearrangements are best explained by a single event of multiple chromosomal breaks and random reassembly. The rearrangements created tissue-specific changes consistent with a role in the initiation of leiomyoma, such as translocations of the HMGA2 and RAD51B loci and aberrations at the COL4A5-COL4A6 locus, and occurred in the presence of normal TP53 alleles. In some cases, separate events had occurred more than once in single tumor-cell lineages. CONCLUSIONS Chromosome shattering and reassembly resembling chromothripsis (a single genomic event that results in focal losses and rearrangements in multiple genomic regions) is a major cause of chromosomal abnormalities in uterine leiomyomas; we propose that tumorigenesis occurs when tissue-specific tumor-promoting changes are formed through these events. Chromothripsis has previously been associated with aggressive cancer; its common occurrence in leiomyomas suggests that it also has a role in the genesis and progression of benign tumors. We observed that multiple separate tumors could be seeded from a single lineage of uterine leiomyoma cells. (Funded by the Academy of Finland Center of Excellence program and others.).


Cancer Cell | 2008

Transcription Factor PROX1 Induces Colon Cancer Progression by Promoting the Transition from Benign to Highly Dysplastic Phenotype

Tatiana V. Petrova; Antti I. Nykänen; Camilla Norrmén; Konstantin I. Ivanov; Leif C. Andersson; Caj Haglund; Pauli Puolakkainen; Frank Wempe; Harald von Melchner; Gérard Gradwohl; Sakari Vanharanta; Lauri A. Aaltonen; Juha Saharinen; Massimiliano Gentile; Alan Richard Clarke; Jussi Taipale; Guillermo Oliver; Kari Alitalo

The Drosophila transcription factor Prospero functions as a tumor suppressor, and it has been suggested that the human counterpart of Prospero, PROX1, acts similarly in human cancers. However, we show here that PROX1 promotes dysplasia in colonic adenomas and colorectal cancer progression. PROX1 expression marks the transition from benign colon adenoma to carcinoma in situ, and its loss inhibits growth of human colorectal tumor xenografts and intestinal adenomas in Apc(min/+) mice, while its transgenic overexpression promotes colorectal tumorigenesis. Furthermore, in intestinal tumors PROX1 is a direct and dose-dependent target of the beta-catenin/TCF signaling pathway, responsible for the neoplastic transformation. Our data underscore the complexity of cancer pathogenesis and implicate PROX1 in malignant tumor progression through the regulation of cell polarity and adhesion.


Neurobiology of Disease | 2005

Mice with Ppt1Δex4 mutation replicate the INCL phenotype and show an inflammation-associated loss of interneurons

Anu Jalanko; Jouni Vesa; Tuula Manninen; Carina von Schantz; Helena Minye; Anna-Liisa Fabritius; Tarja Salonen; Juhani Rapola; Massimiliano Gentile; Outi Kopra; Leena Peltonen

Infantile Neuronal Ceroid Lipofuscinosis (INCL) results from mutations in the palmitoyl protein thioesterase (PPT1, CLN1) gene and is characterized by dramatic death of cortical neurons. We generated Ppt1Deltaex4 mice by a targeted deletion of exon 4 of the mouse Ppt1 gene. Similar to the clinical phenotype, the homozygous mutants show loss of vision from the age of 8 weeks, seizures after 4 months and paralysis of hind limbs at the age of 5 months. Autopsy revealed a dramatic loss of brain mass and histopathology demonstrated accumulation of autofluorescent granular osmiophilic deposits (GRODS), both characteristic of INCL. At 6 months, the homozygous Ppt1Deltaex4 mice showed a prominent loss of GABAergic interneurons in several brain areas. The transcript profiles of wild-type and mutant mouse brains revealed that most prominent alterations involved parts of the immune response, implicating alterations similar to those of the aging brain and neurodegeneration. These findings make the Ppt1Deltaex4 mouse an interesting model for the inflammation-associated death of interneurons.


Journal of Neuroscience Research | 2006

Batten disease (JNCL) is linked to disturbances in mitochondrial, cytoskeletal, and synaptic compartments.

Kaisu Luiro; Outi Kopra; Tomas Blom; Massimiliano Gentile; Hannah M. Mitchison; Iiris Hovatta; Kid Törnquist; Anu Jalanko

Intracellular pathways leading to neuronal degeneration are poorly understood in the juvenile neuronal ceroid lipofuscinosis (JNCL, Batten disease), caused by mutations in the CLN3 gene. To elucidate the early pathology, we carried out comparative global transcript profiling of the embryonic, primary cultures of the Cln3−/− mouse neurons. Statistical and functional analyses delineated three major cellular pathways or compartments affected: mitochondrial glucose metabolism, cytoskeleton, and synaptosome. Further functional studies showed a slight mitochondrial dysfunction and abnormalities in the microtubule cytoskeleton plus‐end components. Synaptic dysfunction was also indicated by the pathway analysis, and by the gross upregulation of the G protein beta 1 subunit, known to regulate synaptic transmission via the voltage‐gated calcium channels. Intracellular calcium imaging showed a delay in the recovery from depolarization in the Cln3−/− neurons, when the N‐type Ca2+ channels had been blocked. The data suggests a link between the mitochondrial dysfunction and cytoskeleton‐mediated presynaptic inhibition, thus providing a foundation for further investigation of the disease mechanism underlying JNCL disease.


European Heart Journal | 2015

Genetics and genotype-phenotype correlations in Finnish patients with dilated cardiomyopathy

Oyediran Akinrinade; Laura Ollila; Sanna Vattulainen; Jonna Tallila; Massimiliano Gentile; Pertteli Salmenperä; Hannele Koillinen; Maija Kaartinen; Markku S. Nieminen; Samuel Myllykangas; Tero-Pekka Alastalo; Juha W. Koskenvuo; Tiina Heliö

Genetic analysis among patients with dilated cardiomyopathy (DCM) is becoming an important part of clinical assessment, as it is in hypertrophic cardiomyopathy (HCM). The genetics of DCM is complex and therefore next-generation sequencing strategies are essential when providing genetic diagnostics. To achieve maximum yield, the diagnostic approach should include comprehensive clinical phenotyping combined with high-quality, high-coverage deep sequencing of DCM-associated genes and clinical variant classification as a basis for defining true yield in genetic testing. Our study has combined a novel sequencing strategy and clinical interpretation to analyse the yield and genotype–phenotype correlations among well-phenotyped Finnish DCM patients.


Neurobiology of Disease | 2007

Palmitoyl protein thioesterase 1 (Ppt1)-deficient mouse neurons show alterations in cholesterol metabolism and calcium homeostasis prior to synaptic dysfunction.

Laura Ahtiainen; Julia Kolikova; Aino-Liisa Mutka; Kaisu Luiro; Massimiliano Gentile; Elina Ikonen; Leonard Khiroug; Anu Jalanko; Outi Kopra

Infantile neuronal ceroid lipofuscinosis (INCL) is a severe neurodegenerative disorder of children, characterized by selective death of neocortical neurons. To understand early disease mechanisms in INCL, we have studied Ppt1(Deltaex4) knock-out mouse neurons in culture and acute brain slices. Global transcript profiling showed deregulation of key neuronal functions in knock-out mice including cholesterol metabolism, neuronal maturation, and calcium homeostasis. Cholesterol metabolism showed major changes; sterol biosynthesis was enhanced and steady-state amounts of sterols were altered at the cellular level. Changes were also present in early maturation of Ppt1(Deltaex4) neurons indicated by increased proliferative capacity of neuronal stem cells. Knock-out neurons presented unaltered electrophysiological properties suggesting uncompromised synaptic function in young animals. However, knock-out neurons exhibited more efficient recovery from glutamate-induced calcium transients, possibly indicating neuroprotective activation. This study established that the neuronal deregulation in INCL is linked to neuronal maturation, lipid metabolism and calcium homeostasis.


BMC Genomics | 2008

Brain gene expression profiles of Cln1 and Cln5 deficient mice unravels common molecular pathways underlying neuronal degeneration in NCL diseases

Carina von Schantz; Juha Saharinen; Outi Kopra; Jonathan D. Cooper; Massimiliano Gentile; Iiris Hovatta; Leena Peltonen; Anu Jalanko

BackgroundThe neuronal ceroid lipofuscinoses (NCL) are a group of childrens inherited neurodegenerative disorders, characterized by blindness, early dementia and pronounced cortical atrophy. The similar pathological and clinical profiles of the different forms of NCL suggest that common disease mechanisms may be involved. To explore the NCL-associated disease pathology and molecular pathways, we have previously produced targeted knock-out mice for Cln1 and Cln5. Both mouse-models replicate the NCL phenotype and neuropathology; the Cln1-/- model presents with early onset, severe neurodegenerative disease, whereas the Cln5-/- model produces a milder disease with a later onset.ResultsHere we have performed quantitative gene expression profiling of the cortex from 1 and 4 month old Cln1-/- and Cln5-/- mice. Combined microarray datasets from both mouse models exposed a common affected pathway: genes regulating neuronal growth cone stabilization display similar aberrations in both models. We analyzed locus specific gene expression and showed regional clustering of Cln1 and three major genes of this pathway, further supporting a close functional relationship between the corresponding gene products; adenylate cyclase-associated protein 1 (Cap1), protein tyrosine phosphatase receptor type F (Ptprf) and protein tyrosine phosphatase 4a2 (Ptp4a2). The evidence from the gene expression data, indicating changes in the growth cone assembly, was substantiated by the immunofluorescence staining patterns of Cln1-/- and Cln5-/- cortical neurons. These primary neurons displayed abnormalities in cytoskeleton-associated proteins actin and β-tubulin as well as abnormal intracellular distribution of growth cone associated proteins GAP-43, synapsin and Rab3.ConclusionOur data provide the first evidence for a common molecular pathogenesis behind neuronal degeneration in INCL and vLINCL. Since CLN1 and CLN5 code for proteins with distinct functional roles these data may have implications for other forms of NCLs as well.

Collaboration


Dive into the Massimiliano Gentile's collaboration.

Top Co-Authors

Avatar

Leena Peltonen

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marjo Kestilä

National Institute for Health and Welfare

View shared research outputs
Top Co-Authors

Avatar

Outi Kopra

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jonna Tallila

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Aino Soro-Paavonen

Helsinki University Central Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge