Owen Duncan
University of Western Australia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Owen Duncan.
Plant Journal | 2009
Chris Carrie; Kristina Kühn; Monika W. Murcha; Owen Duncan; Ian Small; Nicholas O'Toole; James Whelan
A variety of approaches were used to predict dual-targeted proteins in Arabidopsis thaliana. These predictions were experimentally tested using GFP fusions. Twelve new dual-targeted proteins were identified: five that were dual-targeted to mitochondria and plastids, six that were dual-targeted to mitochondria and peroxisomes, and one that was dual-targeted to mitochondria and the nucleus. Two methods to predict dual-targeted proteins had a high success rate: (1) combining the AraPerox database with a variety of subcellular prediction programs to identify mitochondrial- and peroxisomal-targeted proteins, and (2) using a variety of prediction programs on a biochemical pathway or process known to contain at least one dual-targeted protein. Several technical parameters need to be taken into account before assigning subcellular localization using GFP fusion proteins. The position of GFP with respect to the tagged polypeptide, the tissue or cells used to detect subcellular localization, and the portion of a candidate protein fused to GFP are all relevant to the expression and targeting of a fusion protein. Testing all gene models for a chromosomal locus is required if more than one model exists.
The Plant Cell | 2010
Estelle Giraud; Sophia Ng; Chris Carrie; Owen Duncan; Jasmine Low; Chun Pong Lee; Olivier Van Aken; A. Harvey Millar; Monika W. Murcha; James Whelan
The TCP family of transcription factors and site II promoter elements that they bind in Arabidopsis link the regulation of gene expression for mitochondrial proteins with a variety of circadian clock components to provide specific time-of-day expression for a variety of genes. Diurnal regulation of transcripts encoding proteins located in mitochondria, plastids, and peroxisomes is important for adaptation of organelle biogenesis and metabolism to meet cellular requirements. We show this regulation is related to diurnal changes in promoter activities and the presence of specific cis-acting regulatory elements in the proximal promoter region [TGGGC(C/T)], previously defined as site II elements, and leads to diurnal changes in organelle protein abundances. These site II elements can act both as activators or repressors of transcription, depending on the night/day period and on the number and arrangement of site II elements in the promoter tested. These elements bind to the TCP family of transcriptions factors in Arabidopsis thaliana, which nearly all display distinct diurnal patterns of cycling transcript abundance. TCP2, TCP3, TCP11, and TCP15 were found to interact with different components of the core circadian clock in both yeast two-hybrid and direct protein–protein interaction assays, and tcp11 and tcp15 mutant plants showed altered transcript profiles for a number of core clock components, including LATE ELONGATED HYPOCOTYL1 and PSEUDO RESPONSE REGULATOR5. Thus, site II elements in the promoter regions of genes encoding mitochondrial, plastid, and peroxisomal proteins provide a direct mechanism for the coordination of expression for genes involved in a variety of organellar functions, including energy metabolism, with the time-of-day specific needs of the organism.
The Plant Cell | 2007
Ryan Lister; Chris Carrie; Owen Duncan; Lois H.M. Ho; Katharine A. Howell; Monika W. Murcha; James Whelan
The role of plant mitochondrial outer membrane proteins in the process of preprotein import was investigated, as some of the principal components characterized in yeast have been shown to be absent or evolutionarily distinct in plants. Three outer membrane proteins of Arabidopsis thaliana mitochondria were studied: TOM20 (translocase of the outer mitochondrial membrane), METAXIN, and mtOM64 (outer mitochondrial membrane protein of 64 kD). A single functional Arabidopsis TOM20 gene is sufficient to produce a normal multisubunit translocase of the outer membrane complex. Simultaneous inactivation of two of the three TOM20 genes changed the rate of import for some precursor proteins, revealing limited isoform subfunctionalization. Inactivation of all three TOM20 genes resulted in severely reduced rates of import for some but not all precursor proteins. The outer membrane protein METAXIN was characterized to play a role in the import of mitochondrial precursor proteins and likely plays a role in the assembly of β-barrel proteins into the outer membrane. An outer mitochondrial membrane protein of 64 kD (mtOM64) with high sequence similarity to a chloroplast import receptor was shown to interact with a variety of precursor proteins. All three proteins have domains exposed to the cytosol and interacted with a variety of precursor proteins, as determined by pull-down and yeast two-hybrid interaction assays. Furthermore, inactivation of one resulted in protein abundance changes in the others, suggesting functional redundancy. Thus, it is proposed that all three components directly interact with precursor proteins to participate in early stages of mitochondrial protein import.
The Plant Cell | 2013
Sophia Ng; Aneta Ivanova; Owen Duncan; Simon R. Law; Olivier Van Aken; Inge De Clercq; Y. Wang; Chris Carrie; Lin Xu; Beata Kmiec; Hayden Walker; Frank Van Breusegem; James Whelan; Estelle Giraud
This work identifies a biological role for ANAC017 as an integral cellular component in mitochondrial retrograde signaling and a high-level transcriptional regulator that is necessary for H2O2-mediated primary stress responses in plants. Plants require daily coordinated regulation of energy metabolism for optimal growth and survival and therefore need to integrate cellular responses with both mitochondrial and plastid retrograde signaling. Using a forward genetic screen to characterize regulators of alternative oxidase1a (rao) mutants, we identified RAO2/Arabidopsis NAC domain-containing protein17 (ANAC017) as a direct positive regulator of AOX1a. RAO2/ANAC017 is targeted to connections and junctions in the endoplasmic reticulum (ER) and F-actin via a C-terminal transmembrane (TM) domain. A consensus rhomboid protease cleavage site is present in ANAC017 just prior to the predicted TM domain. Furthermore, addition of the rhomboid protease inhibitor N-p-Tosyl-l-Phe chloromethyl abolishes the induction of AOX1a upon antimycin A treatment. Simultaneous fluorescent tagging of ANAC017 with N-terminal red fluorescent protein (RFP) and C-terminal green fluorescent protein (GFP) revealed that the N-terminal RFP domain migrated into the nucleus, while the C-terminal GFP tag remained in the ER. Genome-wide analysis of the transcriptional network regulated by RAO2/ANAC017 under stress treatment revealed that RAO2/ANAC017 function was necessary for >85% of the changes observed as a primary response to cytosolic hydrogen peroxide (H2O2), but only ∼33% of transcriptional changes observed in response to antimycin A treatment. Plants with mutated rao2/anac017 were more stress sensitive, whereas a gain-of-function mutation resulted in plants that had lower cellular levels of H2O2 under untreated conditions.
Genome Research | 2017
Bernardo Clavijo; Luca Venturini; Christian Schudoma; Gonzalo Garcia Accinelli; Gemy Kaithakottil; Jonathan Wright; Philippa Borrill; George Kettleborough; Darren Heavens; Helen D. Chapman; James Lipscombe; Tom Barker; Fu-Hao Lu; Neil McKenzie; Dina Raats; Ricardo H. Ramirez-Gonzalez; Aurore Coince; Ned Peel; Lawrence Percival-Alwyn; Owen Duncan; Josua Trösch; Guotai Yu; Dan Bolser; Guy Namaati; Arnaud Kerhornou; Manuel Spannagl; Heidrun Gundlach; Georg Haberer; Robert Davey; Christine Fosker
Advances in genome sequencing and assembly technologies are generating many high-quality genome sequences, but assemblies of large, repeat-rich polyploid genomes, such as that of bread wheat, remain fragmented and incomplete. We have generated a new wheat whole-genome shotgun sequence assembly using a combination of optimized data types and an assembly algorithm designed to deal with large and complex genomes. The new assembly represents >78% of the genome with a scaffold N50 of 88.8 kb that has a high fidelity to the input data. Our new annotation combines strand-specific Illumina RNA-seq and Pacific Biosciences (PacBio) full-length cDNAs to identify 104,091 high-confidence protein-coding genes and 10,156 noncoding RNA genes. We confirmed three known and identified one novel genome rearrangements. Our approach enables the rapid and scalable assembly of wheat genomes, the identification of structural variants, and the definition of complete gene models, all powerful resources for trait analysis and breeding of this key global crop.
FEBS Letters | 2008
Chris Carrie; Monika W. Murcha; Kristina Kuehn; Owen Duncan; Michelle M. Barthet; Penelope M. C. Smith; Holger Eubel; Etienne H. Meyer; David A. Day; A. Harvey Millar; James Whelan
We found that four type II NAD(P)H dehydrogenases (ND) in Arabidopsis are targeted to two locations in the cell; NDC1 was targeted to mitochondria and chloroplasts, while NDA1, NDA2 and NDB1 were targeted to mitochondria and peroxisomes. Targeting of NDC1 to chloroplasts as well as mitochondria was shown using in vitro and in vivo uptake assays and dual targeting of NDC1 to plastids relies on regions in the mature part of the protein. Accumulation of NDA type dehydrogenases to peroxisomes and mitochondria was confirmed using Western blot analysis on highly purified organelle fractions. Targeting of ND proteins to mitochondria and peroxisomes is achieved by two separate signals, a C‐terminal signal for peroxisomes and an N‐terminal signal for mitochondria.
Journal of Biological Chemistry | 2010
Chris Carrie; Estelle Giraud; Owen Duncan; Lin Xu; Y. Wang; Shaobai Huang; Rachel Clifton; Monika W. Murcha; Aleksandra Filipovska; Oliver Rackham; Alice Vrielink; James Whelan
The disulfide relay system of the mitochondrial intermembrane space has been extensively characterized in Saccharomyces cerevisiae. It contains two essential components, Mia40 and Erv1. The genome of Arabidopsis thaliana contains a single gene for each of these components. Although insertional inactivation of Erv1 leads to a lethal phenotype, inactivation of Mia40 results in no detectable deleterious phenotype. A. thaliana Mia40 is targeted to and accumulates in mitochondria and peroxisomes. Inactivation of Mia40 results in an alteration of several proteins in mitochondria, an absence of copper/zinc superoxide dismutase (CSD1), the chaperone for superoxide dismutase (Ccs1) that inserts copper into CSD1, and a decrease in capacity and amount of complex I. In peroxisomes the absence of Mia40 leads to an absence of CSD3 and a decrease in abnormal inflorescence meristem 1 (Aim1), a β-oxidation pathway enzyme. Inactivation of Mia40 leads to an alteration of the transcriptome of A. thaliana, with genes encoding peroxisomal proteins, redox functions, and biotic stress significantly changing in abundance. Thus, the mechanistic operation of the mitochondrial disulfide relay system is different in A. thaliana compared with other systems, and Mia40 has taken on new roles in peroxisomes and mitochondria.
Plant Physiology | 2011
Owen Duncan; Nicolas L. Taylor; Chris Carrie; Holger Eubel; Szymon Kubiszewski-Jakubiak; Botao Zhang; Reena Narsai; A. Harvey Millar; James Whelan
The composition of the mitochondrial outer membrane is notoriously difficult to deduce by orthology to other organisms, and biochemical enrichments are inevitably contaminated with the closely associated inner mitochondrial membrane and endoplasmic reticulum. In order to identify novel proteins of the outer mitochondrial membrane in Arabidopsis (Arabidopsis thaliana), we integrated a quantitative mass spectrometry analysis of highly enriched and prefractionated samples with a number of confirmatory biochemical and cell biology approaches. This approach identified 42 proteins, 27 of which were novel, more than doubling the number of confirmed outer membrane proteins in plant mitochondria and suggesting novel functions for the plant outer mitochondrial membrane. The novel components identified included proteins that affected mitochondrial morphology and/or segregation, a protein that suggests the presence of bacterial type lipid A in the outer membrane, highly stress-inducible proteins, as well as proteins necessary for embryo development and several of unknown function. Additionally, proteins previously inferred via orthology to be present in other compartments, such as an NADH:cytochrome B5 reductase required for hydroxyl fatty acid accumulation in developing seeds, were shown to be located in the outer membrane. These results also revealed novel proteins, which may have evolved to fulfill plant-specific requirements of the mitochondrial outer membrane, and provide a basis for the future functional characterization of these proteins in the context of mitochondrial intracellular interaction.
Journal of Biological Chemistry | 2013
Sophia Ng; Estelle Giraud; Owen Duncan; Simon R. Law; Y. Wang; Lin Xu; Reena Narsai; Chris Carrie; Hayden Walker; David A. Day; Nicolás E. Blanco; Åsa Strand; James Whelan; Aneta Ivanova
Background: Mitochondria send signals to the nucleus to modulate gene expression when mitochondrial function is perturbed. Results: Cyclin-dependent kinase E1 (CDKE1) was identified as an essential component in regulation of responses to perturbation of mitochondrial electron transport. Conclusion: Mitochondrial regulation is integrated with growth, energy, and other cellular stress signaling pathways. Significance: The identification of a molecular link between mitochondrial retrograde regulation and growth and stress signaling pathways. Plants must deal effectively with unfavorable growth conditions that necessitate a coordinated response to integrate cellular signals with mitochondrial retrograde signals. A genetic screen was carried out to identify regulators of alternative oxidase (rao mutants), using AOX1a expression as a model system to study retrograde signaling in plants. Two independent rao1 mutant alleles identified CDKE1 as a central nuclear component integrating mitochondrial retrograde signals with energy signals under stress. CDKE1 is also necessary for responses to general cellular stresses, such as H2O2 and cold that act, at least in part, via anterograde pathways, and integrates signals from central energy/stress sensing kinase signal transduction pathways within the nucleus. Together, these results place CDKE1 as a central kinase integrating diverse cellular signals and shed light on a mechanism by which plants can effectively switch between growth and stress responses.
Biochimica et Biophysica Acta | 2013
Owen Duncan; Monika W. Murcha; James Whelan
The basic mitochondrial protein import apparatus was established in the earliest eukaryotes. Over the subsequent course of evolution and the divergence of the plant, animal and fungal lineages, this basic import apparatus has been modified and expanded in order to meet the specific needs of protein import in each kingdom. In the plant kingdom, the arrival of the plastid complicated the process of protein trafficking and is thought to have given rise to the evolution of a number of unique components that allow specific and efficient targeting of mitochondrial proteins from their site of synthesis in the cytosol, to their final location in the organelle. This includes the evolution of two unique outer membrane import receptors, plant Translocase of outer membrane 20 kDa subunit (TOM20) and Outer membrane protein of 64 kDa (OM64), the loss of a receptor domain from an ancestral import component, Translocase of outer membrane 22 kDa subunit (TOM22), evolution of unique features in the disulfide relay system of the inter membrane space, and the addition of an extra membrane spanning domain to another ancestral component of the inner membrane, Translocase of inner membrane 17 kDa subunit (TIM17). Notably, many of these components are encoded by multi-gene families and exhibit differential sub-cellular localisation and functional specialisation. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.