Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Oya Ekin Karasan is active.

Publication


Featured researches published by Oya Ekin Karasan.


Operations Research Letters | 2001

The robust spanning tree problem with interval data

Hande Yaman; Oya Ekin Karasan; Mustafa Ç. Pınar

Motivated by telecommunications applications we investigate the minimum spanning tree problem where edge costs are interval numbers. Since minimum spanning trees depend on the realization of the edge costs, we define the robust spanning tree problem to hedge against the worst case contingency, and present a mixed integer programming formulation of the problem. We also define some useful optimality concepts, and present characterizations for these entities leading to polynomial time recognition algorithms. These entities are then used to preprocess a given graph with interval data prior to the solution of the robust spanning tree problem. Computational results show that these preprocessing procedures are quite effective in reducing the time to compute a robust spanning tree.


Computers & Operations Research | 2009

A tabu-search based heuristic for the hub covering problem over incomplete hub networks

Hatice Calik; Sibel A. Alumur; Bahar Yetis Kara; Oya Ekin Karasan

Hub location problems deal with finding the location of hub facilities and with the allocation of demand nodes to these located hub facilities. In this paper, we study the single allocation hub covering problem over incomplete hub networks and propose an integer programming formulation to this end. The aim of our model is to find the location of hubs, the hub links to be established between the located hubs, and the allocation of non-hub nodes to the located hub nodes such that the travel time between any origin-destination pair is within a given time bound. We present an efficient heuristic based on tabu search and test the performance of our heuristic on the CAB data set and on the Turkish network.


Discrete Applied Mathematics | 2005

Robotic cell scheduling with operational flexibility

M. Selim Akturk; Hakan Gultekin; Oya Ekin Karasan

In this paper, we study the problem of two-machine, identical parts robotic cell scheduling with operational flexibility. We assume that every part to be processed has a number of operations to be completed in these two machines and both machines are capable of performing all of the operations. The decision to be made includes finding the optimal robot move cycle and the corresponding optimal allocation of operations to these two machines that jointly minimize the cycle time. We prove that with this definition of the problem 1-unit robot move cycles are no longer necessarily optimal and that according to the given parameters either one of the 1-unit robot move cycles or a 2-unit robot move cycle is optimal. The regions of optimality are presented.


Computers & Operations Research | 2007

Scheduling in a three-machine robotic flexible manufacturing cell

Hakan Gultekin; M. Selim Akturk; Oya Ekin Karasan

In this study, we consider a flexible manufacturing cell (FMC) processing identical parts on which the loading and unloading of machines are made by a robot. The machines used in FMCs are predominantly CNC machines and these machines are flexible enough for performing several operations provided that the required tools are stored in their tool magazines. Traditional research in this area considers a flowshop type system. The current study relaxes this flowshop assumption which unnecessarily limits the number of alternatives. In traditional robotic cell scheduling literature, the processing time of each part on each machine is a known parameter. However, in this study the processing times of the parts on the machines are decision variables. Therefore, we investigated the productivity gain attained by the additional flexibility introduced by the FMCs. We propose new lower bounds for the 1-unit and 2-unit robot move cycles (for which we present a completely new procedure to derive the activity sequences of 2-unit cycles in a three-machine robotic cell) under the new problem domain for the flowshop type robot move cycles. We also propose a new robot move cycle which is a direct consequence of process and operational flexibility of CNC machines. We prove that this proposed cycle dominates all 2-unit robot move cycles and present the regions where the proposed cycle dominates all 1-unit cycles. We also present a worst case performance bound of using this proposed cycle.


European Journal of Operational Research | 2016

A branch and price approach for routing and refueling station location model

Barış Yıldız; Okan Arslan; Oya Ekin Karasan

The deviation flow refueling location problem is to locate p refueling stations in order to maximize the flow volume that can be refueled respecting the range limitations of the alternative fuel vehicles and the shortest path deviation tolerances of the drivers. We first provide an enhanced compact model based on a combination of existing models in the literature for this relatively new operations research problem. We then extend this problem and introduce the refueling station location problem which adds the routing aspect of the individual drivers. Our proposed branch and price algorithm relaxes the simple path assumption generally adopted in the existing studies and implicitly takes into account deviation tolerances without the pregeneration of the routes. Therefore, the decrease in solution times with respect to existing models is significant and our algorithm scales very efficiently to more realistic network dimensions.


Computers & Operations Research | 2009

Pure cycles in flexible robotic cells

Hakan Gultekin; Oya Ekin Karasan; M. Selim Akturk

In this study, an m-machine flexible robotic manufacturing cell consisting of CNC machines is considered. The flexibility of the machines leads to a new class of robot move cycles called the pure cycles. We first model the problem of determining the best pure cycle in an m-machine cell as a special travelling salesman problem in which the distance matrix consists of decision variables as well as parameters. We focus on two specific cycles among the huge class of pure cycles. We prove that, in most of the regions, either one of these two cycles is optimal. For the remaining regions we derive worst case performances of these cycles. We also prove that the set of pure cycles dominates the flowshop-type robot move cycles considered in the literature. As a design problem, we consider the number of machines in a cell as a decision variable. We determine the optimal number of machines that minimizes the cycle time for given cell parameters such as the processing times, robot travel times and the loading/unloading times of the machines.


International Journal of Production Research | 2008

Scheduling in robotic cells: process flexibility and cell layout

Hakan Gultekin; M. Selim Akturk; Oya Ekin Karasan

The focus of this study is the identical parts robotic cell scheduling problem with m machines under the assumption of process and operational flexibility. A direct consequence of this assumption is a new robot move cycle that has been overlooked in the existing literature. We prove that this new cycle dominates all classical robot move cycles considered in the literature for m = 2. We also prove that changing the layout from an in-line robotic cell to a robot-centered cell reduces the cycle time of the proposed cycle even further, whereas the cycle times of all other cycles remain the same. For the m-machine case, we find the regions where the proposed cycle dominates the classical robot move cycles, and for the remaining regions present its worst case performance with respect to classical robot move cycles. Considering the number of machines as a decision variable, we also find the optimal number of machines that minimizes the cycle time of the proposed cycle.


European Journal of Operational Research | 2006

Cyclic scheduling of a 2-machine robotic cell with tooling constraints

Hakan Gultekin; M. Selim Akturk; Oya Ekin Karasan

In this study, we deal with the robotic cell scheduling problem with two machines and identical parts. In an ideal FMS, CNC machines are capable of performing all the required operations as long as the required tools are stored in their tool magazines. However, this assumption may be unrealistic at times since the tool magazines have limited capacity and in many practical instances the required number of tools exceeds this capacity. In this respect, our study assumes that some operations can only be processed on the first machine while some others can only be processed on the second machine due to tooling constraints. Remaining operations can be processed on either machine. The problem is to find the allocation of the remaining operations to the machines and the optimal robot move cycle that jointly minimize the cycle time. We prove that the optimal solution is either a 1-unit or a 2-unit robot move cycle and we present the regions of optimality. Finally, a sensitivity analysis on the results is conducted.


Computers & Operations Research | 2010

Bicriteria robotic operation allocation in a flexible manufacturing cell

Hakan Gultekin; M. Selim Akturk; Oya Ekin Karasan

Consider a manufacturing cell of two identical CNC machines and a material handling robot. Identical parts requesting the completion of a number of operations are to be produced in a cyclic scheduling environment through a flow shop type setting. The existing studies in the literature overlook the flexibility of the CNC machines by assuming that both the allocation of the operations to the machines as well as their respective processing times are fixed. Consequently, the provided results may be either suboptimal or valid under unnecessarily limiting assumptions for a flexible manufacturing cell. The allocations of the operations to the two machines and the processing time of an operation on a machine can be changed by altering the machining conditions of that machine such as the speed and the feed rate in a CNC turning machine. Such flexibilities constitute the point of origin of the current study. The allocation of the operations to the machines and the machining conditions of the machines affect the processing times which, in turn, affect the cycle time. On the other hand, the machining conditions also affect the manufacturing cost. This study is the first to consider a bicriteria model which determines the allocation of the operations to the machines, the processing times of the operations on the machines, and the robot move sequence that jointly minimize the cycle time and the total manufacturing cost. We provide algorithms for the two 1-unit cycles and test their efficiency in terms of the solution quality and the computation time by a wide range of experiments on varying design parameters.


International Journal of Production Research | 2011

Bicriteria robotic cell scheduling with controllable processing times

Serdar Yildiz; M. Selim Akturk; Oya Ekin Karasan

The current study deals with a bicriteria scheduling problem arising in an m-machine robotic cell consisting of CNC machines producing identical parts. Such machines by nature possess the process flexibility of altering processing times by modifying the machining conditions at differing manufacturing costs. Furthermore, they possess the operational flexibility of being capable of processing all the operations of these identical parts. This latter flexibility in turn introduced a new class of robot move cycles, called pure cycles, to the literature. Within the restricted class of pure cycles, our task is to find the processing times on machines so as to minimise the cycle time and the manufacturing cost simultaneously. We characterise the set of all non-dominated solutions for two specific pure cycles that have emerged as prominent ones in the literature. We prove that either of these pure cycles is non-dominated for the majority of attainable cycle time values. For the remaining regions, we provide the worst case performance of one of these two cycles.

Collaboration


Dive into the Oya Ekin Karasan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hakan Gultekin

TOBB University of Economics and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge