Øyvind Saetra
Norwegian Meteorological Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Øyvind Saetra.
Journal of Marine Systems | 2001
Øyvind Breivik; Øyvind Saetra
Abstract A real time assimilation and forecasting system for coastal currents is presented. The purpose of the system is to deliver current analyses and forecasts on based on assimilation of high-frequency radar surface current measurements. The local Vessel Traffic Service monitoring the ship traffic to two oil terminals on the coast of Norway received the analyses and forecasts in real time. A new assimilation method based on optimal interpolation is presented where spatial covariances derived from an ocean model are used instead of simplified mathematical formulations. An array of high frequency radar antennae provides the current measurements. A suite of nested ocean models comprises the model system. The observing system is found to yield good analyses and short range forecasts that are significantly improved compared to a model twin without assimilation. The system is fast, analysis and 6-h forecasts are ready at the Vessel Traffic Service 45 min after acquisition of radar measurements.
Coastal Engineering | 2003
Lucy R. Wyatt; J. Jim Green; Klaus-Werner Gurgel; J.C. Nieto Borge; Konstanze Reichert; Katrin Hessner; Heinz Günther; Wolfgang Rosenthal; Øyvind Saetra; Magnar Reistad
The objective of the EuroROSE (European Radar Ocean Sensing) project was to combine area covering ground-based remote-sensed wave and current data with high-resolution numerical forecast models to provide nowcasts and forecasts for coastal marine operators. Two experiments to test and to demonstrate the system took place: one on the coast of Norway, north of Bergen in March 2000 and the second on the north coast of Spain at Gijon in October–November 2000. Qualitative and quantitative intercomparisons of the wave measurements and wave model products from these experiments are presented. These include measurements using the Wellen Radar (WERA) high-frequency (HF) radar, the WaMoS (Wave Monitoring System) Xband radar, a directional Waverider and output from the WAM wave model. Comparisons are made of the full directional spectra and of various derived parameters. This is the first-ever intercomparison between HF and X-band radar wave measurements and between either of these and WAM. It has provided a data set covering a much wider range of storm and swell conditions than had been available previously for radar wave-measurement validation purposes and has clarified a number of limitations of the radars as well as providing a lot of very useful radar wave data for future model-validation applications. The intercomparison has led to improvements in the data quality control procedures of both WaMoS and WERA. The two radar sytems measured significant wave height with mean biases of 3% and 6%, respectively, and mean direction differences of less than 2j in both cases. Limitations in the WAM model implementation are also discussed. D 2002 Elsevier Science B.V. All rights reserved.
Monthly Weather Review | 2004
Øyvind Saetra; Hans Hersbach; Jean-Raymond Bidlot; David S. Richardson
Abstract The effects of observation errors on rank histograms and reliability diagrams are investigated using a perfect model approach. The three-variable Lorenz-63 model was used to simulate an idealized ensemble prediction system (EPS) with 50 perturbed ensemble members and one control forecast. Observation errors at verification time were introduced by adding normally distributed noise to the true state at verification time. Besides these simulations, a theoretical analysis was also performed. One of the major findings was that rank histograms are very sensitive to the presence of observation errors, leading to overpopulated upper- and lowermost ranks. This sensitivity was shown to grow for larger ensemble sizes. Reliability diagrams were far less sensitive in this respect. The resulting u-shaped rank histograms can easily be misinterpreted as indicating too little spread in the ensemble prediction system. To account for this effect when real observations are used to assess an ensemble prediction syste...
Journal of the Atmospheric Sciences | 2009
Alvaro Semedo; Øyvind Saetra; Anna Rutgersson; Kimmo K. Kahma; Heidi Pettersson
Recent field observations and large-eddy simulations have shown that the impact of fast swell on the marine atmospheric boundary layer (MABL) might be stronger than previously assumed. For low to moderate winds blowing in the same direction as the waves, swell propagates faster than the mean wind. The momentum flux above the sea surface will then have two major components: the turbulent shear stress, directed downward, and the swell-induced stress, directed upward. For sufficiently high wave age values, the wave-induced component becomes increasingly dominant, and the total momentum flux will be directed into the atmosphere. Recent field measurements have shown that this upward momentum transfer from the ocean into the atmosphere has a considerable impact on the surface layer flow dynamics and on the turbulence structure of the overall MABL. The vertical wind profile will no longer exhibit a logarithmic shape because an acceleration of the airflow near the surface will take place, generating a low-level wave-driven wind maximum (a wind jet). As waves propagate away from their generation area as swell, some of the wave momentum will be returned to the atmosphere in the form of wave-driven winds. A model that qualitatively reproduces the wave-following atmospheric flow and the wave-generated wind maximum, as seen from measurements, is proposed. The model assumes a stationary momentum and turbulent kinetic energy balance and uses the dampening of the waves at the surface to describe the momentum flux from the waves to the atmosphere. In this study, simultaneous observations of wind profiles, turbulent fluxes, and wave spectra during swell events are presented and compared with the model. In the absence of an established model for the linear damping ratio during swell conditions, the model is combined with observations to estimate the wave damping. For the cases in which the observations showed a pronounced swell signal and almost no wind waves, the agreement between observed and modeled wind profiles is remarkably good. The resulting attenuation length is found to be relatively short, which suggests that the estimated damping ratios are too large. The authors attribute this, at least partly, to processes not accounted for by the model, such as the existence of an atmospheric background wind. In the model, this extra momentum must be supplied by the waves in terms of a larger damping ratio.
Journal of Physical Oceanography | 2006
Jan Erik Weber; Göran Broström; Øyvind Saetra
Abstract It is demonstrated that the Eulerian and the Lagrangian descriptions of fluid motion yield the same form for the mean wave-induced volume fluxes in the surface layer of a viscous rotating ocean. In the Eulerian case, the volume fluxes are obtained in the familiar way by integrating the horizontal components of the Navier–Stokes equation in the vertical direction, as seen, for example, in the book by Phillips. In the direct Lagrangian approach, the perturbation equations for the second-order mean drift are integrated in the vertical direction. This yields the advantage that the form drag, which is a source term for the wave-induced transports, can be related to the virtual wave stress that acts to transfer dissipated mean wave momentum into mean currents. In particular, for waves that are periodic in space and time, comparisons between empirical and theoretical relations for the form drag yield an estimate for the wave-induced bulk turbulent eddy viscosity in the surface layer. A simplistic approa...
Bulletin of the American Meteorological Society | 2011
Jón Egill Kristjánsson; Idar Barstad; Trygve Aspelien; Ivan Føre; Ø. Godøy; Øystein Hov; Emma A. Irvine; Trond Iversen; Erik W. Kolstad; T. E. Nordeng; H. McInnes; R. Randriamampianina; Joachim Reuder; Øyvind Saetra; M. A. Shapiro; Thomas Spengler; Haraldur Ólafsson
From a weather forecasting perspective, the Arctic poses particular challenges for mainly two reasons: 1) The observational data are sparse and 2) the weather phenomena responsible for severe weather, such as polar lows, Arctic fronts, and orographic influences on airflow, are poorly resolved and described by the operational numerical weather prediction (NWP) models. The Norwegian International Polar Year (IPY)– The Observing System Research and Predictability Experiment (THORPEX) project (2007–10) sought to significantly improve weather forecasts of these phenomena through a combined modeling and observational effort. The crux of the observational effort was a 3-week international field campaign out of northern Norway in early 2008, combining airborne and surface-based observations. The main platform of the field campaign was the Deutsches Zentrum fur Luft- und Raumfahrt (DLR) research aircraft Falcon, equipped with lidar systems for profiling of aerosols, humidity, and wind, in addition to in situ measu...
Weather and Forecasting | 2004
Øyvind Saetra; Jean-Raymond Bidlot
Abstract The potential benefits of using the ECMWF Ensemble Prediction System (EPS) for waves and marine surface winds are demonstrated using buoy and platform data as well as altimeter data. For forecasting purposes, the spread of the different forecasts in the ensemble may indeed be regarded as a measure of the uncertainties in the deterministic predictions. In order to demonstrate this point, a new method is presented in which the ensemble spread is divided into different classes. An upper bound for the model errors is established by calculating the corresponding percentiles of the errors for each separate class. Using this upper bound for the model errors, a strong correlation between the ensemble spread and the deterministic forecast skill is shown. The reliability of the probability forecasts as derived from the EPS for wind and waves is found to be good. However, the reliability diagrams indicate a small tendency for overconfidence in the wave probability forecasts for waves above 6 and 8 m. This i...
Journal of Physical Oceanography | 2007
Øyvind Saetra; Jon Albretsen; Peter A. E. M. Janssen
The impact of wave-dependent surface stress on the ocean circulation has been studied using surface stresses calculated from a numerical wave model. The main questions to be investigated were what the effect would be on the Ekman currents in the upper ocean and what the impact would be on storm surge predictions. To answer the first question, the response of wave-dependent forcing on an Ekman type of model was studied. Here, the wave forcing was provided by a one-gridpoint version of the wave model. Second, the impact of the waves was studied with a three-dimensional ocean circulation model for the North Sea. Three different experiments were performed for a period of 1 yr. To test the effect on the storm surge signal, the results have been compared with sea level observations from 22 stations along the Norwegian and Dutch coasts. One of the main findings is that calculating stresses in the wave model, thereby introducing sea-state-dependent momentum fluxes, has a strong positive impact on the storm surge modeling compared with applying a traditional parameterization of surface stresses from the 10-m wind speed. When all cases with sea level deviation from the mean of less than 0.5 m were removed, the root-mean-square error for 1 yr averaged over all stations was reduced by approximately 6 cm. Splitting the momentum budget into an Eulerian and a wave part (Stokes drift) has only a negligible effect on the modeling of the sea surface elevation but increases the angular turning of the Eulerian surface drift to the right of the wind direction with an angle of about 4°.
Journal of Climate | 2013
Øyvind Breivik; Ole Johan Aarnes; Jean-Raymond Bidlot; Ana Carrasco; Øyvind Saetra
AbstractA method for estimating return values from ensembles of forecasts at advanced lead times is presented. Return values of significant wave height in the northeast Atlantic, the Norwegian Sea, and the North Sea are computed from archived +240-h forecasts of the ECMWF Ensemble Prediction System (EPS) from 1999 to 2009. Three assumptions are made: First, each forecast is representative of a 6-h interval and collectively the dataset is then comparable to a time period of 226 years. Second, the model climate matches the observed distribution, which is confirmed by comparing with buoy data. Third, the ensemble members are sufficiently uncorrelated to be considered independent realizations of the model climate. Anomaly correlations of 0.20 are found, but peak events (>P97) are entirely uncorrelated. By comparing return values from individual members with return values of subsamples of the dataset it is also found that the estimates follow the same distribution and appear unaffected by correlations in the e...
Tellus A | 2008
Øyvind Saetra; Torsten Linders; Jens Debernard
Possible surface warming by strong wind-forcing from polar lows in the North-Atlantic has been investigated using a numerical model for vertical entrainment of waters from a subsurface warm core, and microwave satellite images of sea-surface temperature during polar low events. The hypothesis is based on the frequently observed subsurface warm core in oceans influenced by the North-Atlantic current (NAC) or by outflowing surface water from the Arctic Ocean. CTD-soundings from the Nordic Seas reveal that the waters from the NAC are located under colder and less saline surface waters in winter. For sufficiently strong wind events, turbulent entrainment of this subsurface warm core may lead to a rapid surface warming. Our main findings is that the surface warming of more than 1 ◦C may take place within a few hours. The result is based on model runs with initial temperature and salinity profiles from CTD-observations. Observational evidence of surface temperatures that support the hypothesis are found in microwave satellite observations from a polar lowevent. In the case presented here, increased sea-surface temperatures between 1 and 2 ◦C were observed. We believe that rapid surfacewarming of this magnitude may be a potential positive feedback mechanism for the cyclone intensity.