Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ozge H. Koymen is active.

Publication


Featured researches published by Ozge H. Koymen.


IEEE Transactions on Vehicular Technology | 2016

Investigation of Prediction Accuracy, Sensitivity, and Parameter Stability of Large-Scale Propagation Path Loss Models for 5G Wireless Communications

Shu Sun; Theodore S. Rappaport; Timothy A. Thomas; Amitava Ghosh; Huan Cong Nguyen; Istvan Zsolt Kovacs; Ignacio Rodriguez; Ozge H. Koymen; Andrzej Partyka

This paper compares three candidate large-scale propagation path loss models for use over the entire microwave and millimeter-wave (mmWave) radio spectrum: the alpha-beta-gamma (ABG) model, the close-in (CI) free-space reference distance model, and the CI model with a frequency-weighted path loss exponent (CIF). Each of these models has been recently studied for use in standards bodies such as 3rd Generation Partnership Project (3GPP) and for use in the design of fifth-generation wireless systems in urban macrocell, urban microcell, and indoor office and shopping mall scenarios. Here, we compare the accuracy and sensitivity of these models using measured data from 30 propagation measurement data sets from 2 to 73 GHz over distances ranging from 4 to 1238 m. A series of sensitivity analyses of the three models shows that the four-parameter ABG model underpredicts path loss when relatively close to the transmitter, and overpredicts path loss far from the transmitter, and that the physically based two-parameter CI model and three-parameter CIF model offer computational simplicity, have very similar goodness of fit (i.e., the shadow fading standard deviation), exhibit more stable model parameter behavior across frequencies and distances, and yield smaller prediction error in sensitivity tests across distances and frequencies, when compared to the four-parameter ABG model. Results show the CI model with a 1-m reference distance is suitable for outdoor environments, while the CIF model is more appropriate for indoor modeling. The CI and CIF models are easily implemented in existing 3GPP models by making a very subtle modification - by replacing a floating non-physically based constant with a frequency-dependent constant that represents free-space path loss in the first meter of propagation. This paper shows this subtle change does not change the mathematical form of existing ITU/3GPP models and offers much easier analysis, intuitive appeal, better model parameter stability, and better accuracy in sensitivity tests over a vast range of microwave and mmWave frequencies, scenarios, and distances, while using a simpler model with fewer parameters.


vehicular technology conference | 2016

5G 3GPP-Like Channel Models for Outdoor Urban Microcellular and Macrocellular Environments

Katsuyuki Haneda; Lei Tan; Yi Zheng; Henrik Asplund; Jian Li; Yi Wang; David Steer; Clara Li; Tommaso Balercia; Sunguk Lee; Youngsuk Kim; Amitava Ghosh; Timothy A. Thomas; Takehiro Nakamura; Yuichi Kakishima; Tetsuro Imai; Haralabos C. Papadopoulos; Theodore S. Rappaport; George R. MacCartney; Mathew K. Samimi; Shu Sun; Ozge H. Koymen; Sooyoung Hur; Jeongho Park; Charlie Zhang; Evangelos Mellios; Andreas F. Molisch; Saeed S. Ghassamzadeh; Arun Ghosh

For the development of new 5G systems to operate in bands up to 100 GHz, there is a need for accurate radio propagation models at these bands that currently are not addressed by existing channel models developed for bands below 6 GHz. This document presents a preliminary overview of 5G channel models for bands up to 100 GHz. These have been derived based on extensive measurement and ray tracing results across a multitude of frequencies from 6 GHz to 100 GHz, and this document describes an initial 3D channel model which includes: 1) typical deployment scenarios for urban microcells (UMi) and urban macrocells (UMa), and 2) a baseline model for incorporating path loss, shadow fading, line of sight probability, penetration and blockage models for the typical scenarios. Various processing methodologies such as clustering and antenna decoupling algorithms are also presented.


vehicular technology conference | 2016

Propagation Path Loss Models for 5G Urban Micro- and Macro-Cellular Scenarios

Shu Sun; Theodore S. Rappaport; Sundeep Rangan; Timothy A. Thomas; Amitava Ghosh; Istvan Zsolt Kovacs; Ignacio Rodriguez; Ozge H. Koymen; Andrzej Partyka; Jan Järveläinen

This paper presents and compares two candidate large-scale propagation path loss models, the alpha-beta-gamma (ABG) model and the close-in (CI) free space reference distance model, for the design of fifth generation (5G) wireless communication systems in urban micro- and macro-cellular scenarios. Comparisons are made using the data obtained from 20 propagation measurement campaigns or ray- tracing studies from 2 GHz to 73.5 GHz over distances ranging from 5 m to 1429 m. The results show that the one-parameter CI model has a very similar goodness of fit (i.e., the shadow fading standard deviation) in both line-of-sight and non-line-of-sight environments, while offering substantial simplicity and more stable behavior across frequencies and distances, as compared to the three-parameter ABG model. Additionally, the CI model needs only one very subtle and simple modification to the existing 3GPP floating-intercept path loss model (replacing a constant with a close-in free space reference value) in order to provide greater simulation accuracy, more simplicity, better repeatability across experiments, and higher stability across a vast range of frequencies.


IEEE Journal of Selected Topics in Signal Processing | 2016

Beamforming Tradeoffs for Initial UE Discovery in Millimeter-Wave MIMO Systems

Vasanthan Raghavan; Jürgen Cezanne; Sundar Subramanian; Ashwin Sampath; Ozge H. Koymen

Millimeter-wave (mmW) multi-input multi-output (MIMO) systems have gained increasing traction toward the goal of meeting the high data-rate requirements in next-generation wireless systems. The focus of this work is on low-complexity beamforming approaches for initial user equipment (UE) discovery in such systems. Toward this goal, we first note the structure of the optimal beamformer with per-antenna gain and phase control and establish the structure of good beamformers with per-antenna phase-only control. Learning these right singular vector (RSV)type beamforming structures in mmW systems is fraught with considerable complexities such as the need for a non-broadcast system design, the sensitivity of the beamformer approximants to small path length changes, inefficiencies due to power amplifier backoff, etc. To overcome these issues, we establish a physical interpretation between the RSV-type beamformer structures and the angles of departure/arrival (AoD/AoA) of the dominant path(s) capturing the scattering environment. This physical interpretation provides a theoretical underpinning to the emerging interest on directional beamforming approaches that are less sensitive to small path length changes. While classical approaches for direction learning such as MUltiple SIgnal Classification (MUSIC) have been well-understood, they suffer from many practical difficulties in a mmW context such as a non-broadcast system design and high computational complexity. A simpler broadcast-based solution for mmW systems is the adaptation of limited feedback-type directional codebooks for beamforming at the two ends. We establish fundamental limits for the best beam broadening codebooks and propose a construction motivated by a virtual subarray architecture that is within a couple of dB of the best tradeoff curve at all useful beam broadening factors. We finally provide the received SNR loss-UE discovery latency tradeoff with the proposed beam broadening constructions. Our results show that users with a reasonable link margin can be quickly discovered by the proposed design with a smooth roll-off in performance as the link margin deteriorates. While these designs are poorer in performance than the RSV learning approaches or MUSIC for cell-edge users, their low-complexity that leads to a broadcast system design makes them a useful candidate for practical mmW systems.


conference on information sciences and systems | 2014

Wireless backhaul node placement for small cell networks

Muhammad Nazmul Islam; Ashwin Sampath; Atul Maharshi; Ozge H. Koymen; Narayan B. Mandayam

Small cells have been proposed as a vehicle for wireless networks to keep up with surging demand. Small cells come with a significant challenge of providing backhaul to transport data to(from) a gateway node in the core network. Fiber based backhaul offers the high rates needed to meet this requirement, but is costly and time-consuming to deploy, when not readily available. Wireless backhaul is an attractive option for small cells as it provides a less expensive and easy-to-deploy alternative to fiber. However, there are multitude of bands and features (e.g. LOS/NLOS, spatial multiplexing etc.) associated with wireless backhaul that need to be used intelligently for small cells. Candidate bands include: sub-6 GHz band that is useful in non-line-of-sight (NLOS) scenarios, microwave band (6-42 GHz) that is useful in point-to-point line-of-sight (LOS) scenarios, and millimeter wave bands (e.g. 60, 70 and 80 GHz) that are recently being commercially used in LOS scenarios. In many deployment topologies, it is advantageous to use aggregator nodes, located at the roof tops of tall buildings near small cells. These nodes can provide high data rate to multiple small cells in NLOS paths, sustain the same data rate to gateway nodes using LOS paths and take advantage of all available bands. This work performs the joint cost optimal aggregator node placement, power allocation, channel scheduling and routing to optimize the wireless backhaul network. We formulate mixed integer nonlinear programs (MINLP) to capture the different interference and multiplexing patterns at sub-6 GHz and microwave band. We solve the MINLP through linear relaxation and branch-and-bound algorithm and apply our algorithm in an example wireless backhaul network of downtown Manhattan.


international conference on communications | 2016

Indoor 5G 3GPP-like channel models for office and shopping mall environments

Katsuyuki Haneda; Lei Tian; Henrik Asplund; Jian Li; Yi Wang; David Steer; Clara Li; Tommaso Balercia; Sunguk Lee; Youngsuk Kim; Amitava Ghosh; Timothy A. Thomas; Takehiro Nakamurai; Yuichi Kakishima; Tetsuro Imai; Haralabos Papadopoulas; Theodore S. Rappaport; George R. MacCartney; Mathew K. Samimi; Shu Sun; Ozge H. Koymen; Sooyoung Hur; Jeongho Park; Jianzhong Zhang; Evangelos Mellios; Andreas F. Molisch; Saeed S. Ghassamzadeh; Arun Ghosh

Future mobile communications systems are likely to be very different to those of today with new service innovations driven by increasing data traffic demand, increasing processing power of smart devices and new innovative applications. To meet these service demands the telecommunications industry is converging on a common set of 5G requirements which includes network speeds as high as 10 Gbps, cell edge rate greater than 100 Mbps, and latency of less than 1 msec. To reach these 5G requirements the industry is looking at new spectrum bands in the range up to 100 GHz where there is spectrum availability for wide bandwidth channels. For the development of new 5G systems to operate in bands up to 100 GHz there is a need for accurate radio propagation models which are not addressed by existing channel models developed for bands below 6 GHz. This paper presents a preliminary overview of the 5G channel models for bands up to 100 GHz in indoor offices and shopping malls, derived from extensive measurements across a multitude of bands. These studies have found some extensibility of the existing 3GPP models (e.g. 3GPP TR36.873) to the higher frequency bands up to 100 GHz. The measurements indicate that the smaller wavelengths introduce an increased sensitivity of the propagation models to the scale of the environment and show some frequency dependence of the path loss as well as increased occurrence of blockage. Further, the penetration loss is highly dependent on the material and tends to increase with frequency. The small-scale characteristics of the channel such as delay spread and angular spread and the multipath richness is somewhat similar over the frequency range, which is encouraging for extending the existing 3GPP models to the wider frequency range. Further work will be carried out to complete these models, but this paper presents the first steps for an initial basis for the model development.


global communications conference | 2014

Indoor mm-Wave Channel Measurements: Comparative Study of 2.9 GHz and 29 GHz

Ozge H. Koymen; Andrzej Partyka; Sundar Subramanian; Junyi Li

The millimeter-wave (mm-Wave) frequency band ~30-300 GHz has received significant attention lately as a prospective band for 5G systems. Millimeter-wave frequencies have traditionally been used for backhaul, satellite and other fixed services. While these bands offer substantial amount of bandwidth and opportunity for spatial multiplexing, the propagation characteristics for terrestrial mobile usage need to be fully understood prior to system design. Towards this end, this paper presents preliminary indoor measurement results obtained using a channel sounder equipped with omni- and directional antennas at 2.9 GHz and 29 GHz as a comparative study of the two bands. The measurements are made within a Qualcomm building in Bridgewater, NJ, USA, for two separate floors, each representing a different yet representative type of office plan. We present measurements and estimated parameters for path loss, excess delay, RMS delay and analyze the power profile of received paths. In addition, we present several spherical scans of particular links to illustrate the 3-D angular spread of the received paths. This work represents initial results of an ongoing effort for comprehensive indoor and outdoor channel measurements. The measurements presented here, along with cited references, offer interesting insights into propagation conditions (e.g. loss, delay/angular spread etc.), coverage and robustness for mobile use of millimeter-wave bands. We believe additional extensive measurement campaigns in diverse settings by academia and industry would help facilitate the generation of usable channel models.


IEEE Transactions on Antennas and Propagation | 2017

Millimeter Wave Channel Measurements and Implications for PHY Layer Design

Vasanthan Raghavan; Andrzej Partyka; Lida Akhoondzadeh-Asl; Mohammad Ali Tassoudji; Ozge H. Koymen; John Sanelli

There has been an increasing interest in the millimeter wave (mmW) frequency regime in the design of the next-generation wireless systems. The focus of this paper is on understanding mmW channel properties that have an important bearing on the feasibility of mmW systems in practice and have a significant impact on physical layer design. In this direction, simultaneous channel sounding measurements at 2.9, 29, and 61 GHz are performed at a number of transmit–receive location pairs in indoor office, shopping mall, and outdoor environments. Based on these measurements, this paper first studies large-scale properties, such as path loss and delay spread across different carrier frequencies in these scenarios. Toward the goal of understanding the feasibility of outdoor-to-indoor coverage, material measurements corresponding to mmW reflection and penetration are studied and significant notches in signal reception spread over a few gigahertz are reported. Finally, implications of these measurements on system design are discussed, and multiple solutions are proposed to overcome these impairments.


IEEE Journal on Selected Areas in Communications | 2017

Single-User Versus Multi-User Precoding for Millimeter Wave MIMO Systems

Vasanthan Raghavan; Sundar Subramanian; Juergen Cezanne; Ashwin Sampath; Ozge H. Koymen; Junyi Li

Given the cost and complexity associated with the deployment of a large number of radio frequency (RF) chains in millimeter wave (mmW) multi-input multi-output (MIMO) systems, this paper addresses the question of network efficiency considerations for hybrid precoding. We first establish the relevance of directional precoding structures as a low-complexity and robust solution to meet the data rate demands of single-user MIMO systems relative to the more complex and less robust eigen-mode-based precoding structures. Key to the relevance of the directional precoding structures is the sparsity of the mmW channel coupled with higher antenna dimensionality affordable due to smaller wavelengths. We then leverage the directional structure of the channel to propose a simple class of directional schedulers that offers a low-complexity and yet approximately fair separation plane in the user space. We then compare the performance of single-user precoding schemes with multi-user precoding schemes and show that from network efficiency considerations, it would be more worthwhile to expend the RF chain resource on multi-user transmissions.


global communications conference | 2016

Directional Hybrid Precoding in Millimeter-Wave MIMO Systems

Vasanthan Raghavan; Sundar Subramanian; Jürgen Cezanne; Ashwin Sampath; Ozge H. Koymen; Junyi Li

The focus of this work is on cost and complexity- induced rank-constrained precoding for millimeter- wave (mmW) multi-input multi-output (MIMO) systems. The higher antenna dimensionality and sparse channel structure of mmW systems motivate directional precoding schemes over more complex and less robust eigen-mode-based precoding schemes. Building on a prior work that illustrated the superiority in design, robustness and performance of a directional rank-1 beamformer, this work considers higher-rank directional precoding structures for mmW systems. It is shown that directional precoders continue to enjoy similar properties in single-user MIMO (SU-MIMO) systems. But from a network efficiency consideration, it would be more worthwhile to expend the radio frequency (RF) chain resource on multi-user transmissions. Towards this goal, a directional scheduler and different directional beamforming structures are proposed here. These structures are shown to result in significant performance improvement over higher-rank SU-MIMO schemes.

Collaboration


Dive into the Ozge H. Koymen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge