Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Özgen Özer is active.

Publication


Featured researches published by Özgen Özer.


International Journal of Nanomedicine | 2012

Resveratrol-loaded solid lipid nanoparticles versus nanostructured lipid carriers: evaluation of antioxidant potential for dermal applications

Evren Homan Gökçe; Emrah Korkmaz; Eleonora Dellera; Giuseppina Sandri; M. Cristina Bonferoni; Özgen Özer

Background Excessive generation of radical oxygen species (ROS) is a contributor to skin pathologies. Resveratrol (RSV) is a potent antioxidant. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) can ensure close contact and increase the amount of drug absorbed into the skin. In this study, RSV was loaded into SLN and NLC for dermal applications. Methods Nanoparticles were prepared by high shear homogenization using Compritol 888ATO, Myglyol, Poloxamer188, and Tween80. Particle size (PS), polydispersity index (PI), zeta potential (ZP), drug entrapment efficiency (EE), and production yield were determined. Differential scanning calorimetry (DSC) analysis and morphological transmission electron microscopy (TEM) examination were conducted. RSV concentration was optimized with cytotoxicity studies, and net intracellular accumulation of ROS was monitored with cytofluorimetry. The amount of RSV was determined from different layers of rat abdominal skin. Results PS of uniform RSV-SLN and RSV-NLC were determined as 287.2 nm ± 5.1 and 110.5 nm ± 1.3, respectively. ZP was −15.3 mV ± 0.4 and −13.8 mV ± 0.1 in the same order. The drug EE was 18% higher in NLC systems. TEM studies showed that the drug in the shell model was relevant for SLN, and that the melting point of the lipid in NLC was slightly lower. Concentrations below 50 μM were determined as suitable RSV concentrations for both SLN and NLC in cell culture studies. RSV-NLC showed less fluorescence, indicating less ROS production in cytofluorometric studies. Ex vivo skin studies revealed that NLC are more efficient in carrying RSV to the epidermis. Conclusion This study suggests that both of the lipid nanoparticles had antioxidant properties at a concentration of 50 μM. When the two systems were compared, NLC penetrated deeper into the skin. RSV-loaded NLC with smaller PS and higher drug loading appears to be superior to SLN for dermal applications.


Journal of Controlled Release | 2010

Lecithin/chitosan nanoparticles of clobetasol-17-propionate capable of accumulation in pig skin

Taner Şenyiğit; Fabio Sonvico; Stefano Barbieri; Özgen Özer; Patrizia Santi; Paolo Colombo

In this study, clobetasol-17-propionate (CP) loaded lecithin/chitosan nanoparticles were studied with special attention to the transport of the active agent across the skin in vitro. Nanoparticles were characterized by measuring particle size, zeta potential, polydispersity index and encapsulation efficiency. The morphology of nanoparticles was evaluated by transmission electron microscopy. Encapsulation experiments with CP showed high encapsulation efficiency (92.2%). To assess the advantages of this carrier-based formulation in topical administration, the accumulation in and permeation across pig ear skin were compared with chitosan gel and commercially available cream of CP. The results obtained indicate that the incorporation of drug into nanoparticles induced an accumulation of CP especially in the epidermis without any significant permeation across the skin. Dilution of CP loaded nanoparticles with chitosan gel (1:9) produced the same amount of CP in the skin compared with commercial cream, although the former contained ten times less CP. This is a remarkable point for the reduction of the side effects of CP. These results demonstrated the suitability of lecithin/chitosan nanoparticles to induce epidermal targeting and to improve the risk-benefit ratio for topically applied CP.


Journal of Controlled Release | 2001

Formulation of shear rate sensitive multiple emulsions

V Muguet; M Seiller; Gillian Barratt; Özgen Özer; J.P Marty; Jean-Louis Grossiord

This work mainly concentrates on the formulation of W/O/W multiple emulsions capable of breaking and releasing their inner aqueous phase under shear rates compatible with agroalimentary, pharmaceutical and cosmetic applications. Three kinds of multiple emulsions were studied: one with a high concentration of primary emulsion, not viscosified in the external aqueous phase; multiple emulsions gelified with a synthetic polymer (Carbopol 974P((R))); and other multiple emulsions thickened with chemically modified cellulose (hydroxypropylcellulose). The results of this study show the influence of the composition of the external aqueous phase of the emulsions on their fragmentation and release as a function of the shear rate. Despite these differences of behavior with respect to the shear rate, each emulsion fits to Taylors theoretical framework, indicating that the bursting mechanisms of the globules under shear are the same whatever the composition of the multiple emulsions.


European Journal of Pharmaceutical Sciences | 2014

Preparation and in vitro–in vivo evaluation of ofloxacin loaded ophthalmic nano structured lipid carriers modified with chitosan oligosaccharide lactate for the treatment of bacterial keratitis

Neslihan Üstündağ-Okur; Evren Homan Gökçe; Duygu İnci Bozbıyık; Sait Egrilmez; Özgen Özer; Gökhan Ertan

The objective of this study was to explore the potential of the nanostructured lipid carriers (NLCs) modified with chitosan oligosaccharide lactate (COL) for topical ocular application. Ofloxacin (OFX) loaded NLCs were prepared by microemulsion or high shear homogenization methods. For combination of NLCs Compritol HD5 ATO was used as solid lipid, oleic acid as liquid lipid, Tween 80 as surfactant, ethanol as co-surfactant. The optimum NLCs was modified with 0.75% COL. The properties of NLCs in the absence or presence of OFX (0.3%) were characterized as zeta potential, particle size, viscosity and pH, TEM, drug loading, encapsulation efficiency and anti-microbial properties. Ex-vivo penetration/permeation studies were performed with rabbit cornea in Franz-diffusion cells. The penetration rate of OFX from NM-COL4OFX and NH-COL4OFX were significantly higher than commercial solution. Based on the selected formulations, in vivo tests were carried out by eye-drop instillation of NLCs in rabbit. The addition of COL improved the preocular residence time, controlled the drug release and enhanced the corneal bioavailability. In conclusion, OFX COL modified NLCs prepared by high shear homogenization method could be offered as a promising strategy for ocular drug delivery.


European Journal of Pharmaceutical Sciences | 2013

Novel topical formulations of Terbinafine-HCl for treatment of onychomycosis.

Sakine Tuncay Tanrıverdi; Özgen Özer

Terbinafine hydrochloride (TBF-HCl) is an active substance that is using for treatment of onychomycosis. Onychomycosis is a fungal infection which is the most common disease of nail plate. The nail plate is a barrier which prevents effective topical treatment of ungual disorders. In this study, TBF-HCl loaded liposome and ethosome formulations and also gel form of these formulations were prepared. The formulations were characterized and in vitro and ex vivo release studies were performed. Nail characterization studies were also performed to examine the effect of formulations and experimental conditions on nail surface. As a result, all formulations can serve as efficient formulations for ungual application of TBF-HCl. By the way, the results of the accumulation studies suggested that liposome poloxamer gel formulation could be promising system for ungual drug delivery due to the better accumulation and easier application of the formulation.


International Journal of Pharmaceutics | 2009

Different approaches for improving skin accumulation of topical corticosteroids

Taner Şenyiğit; Cristina Padula; Özgen Özer; Patrizia Santi

The aim of this paper was to evaluate the effect of vehicle, chemical enhancer and iontophoresis on the skin accumulation of clobetasol propionate (CP) and mometasone furoate (MF). In vitro permeation experiments were performed using pig ear skin as barrier and HPLC as quantification method. The formulations tested were chitosan gels, sodium-deoxycholate gels and commercial creams of CP and MF. The results obtained indicate that Na-DOC gel had an enhancing effect on the skin accumulation of both active agents. This effect was more evident with CP especially in the stratum corneum and epidermis which are the target sites of topical steroidal treatment. Two terpene derivatives (D-limonene and nerolidol) and Transcutol P were evaluated as chemical penetration enhancers. Nerolidol produced considerable increase in the amount of CP and MF accumulated without any permeation across the skin. The application of electric current (anodal iontophoresis) to the gels improved the accumulation of MF while it did not effect the accumulation of CP. Due to the best accumulation results of nerolidol, the enhancement effect in combination with iontophoresis was also investigated. It was shown that, the combination of anodal iontophoresis and chemical enhancer (nerolidol) produced no further enhancement for both active agents.


Journal of Dermatology | 2008

Efficiency of ellagic acid and arbutin in melasma: A randomized, prospective, open-label study

İlgen Ertam; Mutlu B; İdil Ünal; Sibel Alper; Bijen Kivcak; Özgen Özer

The aim of this study was to compare the effectiveness of gel formulations containing arbutin, synthetic ellagic acid and plant extracts that contain ellagic acid, on patients with melasma. Thirty patients who applied to Ege University Medical Faculty, Department of Dermatology, were included in the study. A signed consent was obtained from each patient prior to study. Patients whose type of melasma was determined via Woods lamp were randomized to groups of arbutin, synthetic ellagic acid and plant extract containing natural ellagic acid. The pigment density of patients was evaluated via Mexameter before and after the treatment. The approval of the Institutional Ethics Committee of Ege University was obtained before the study. Wilcoxon and Kruskal–Wallis tests were used in the statistical analysis. Nine of 10 patients, for whom synthetic ellagic acid was started, completed the study. A decrease in the level of melanin was determined in eight of these nine patients (P = 0.038). A significant decrease in the level of melanin was also determined in all 10 patients who used plant extract containing ellagic acid (P = 0.05). A significant response was obtained from all of 10 patients who used arbutin. The difference between pre‐ and post‐treatment levels of melanin was statistically significant (P = 0.05). Formulations prepared with plant extracts containing ellagic acid was found effective on melasma, similar to the formulations containing synthetic ellagic acid and arbutin. This material that is not yet being used widespread commercially on melasma could be an effective alternative for treatment of melasma.


International Journal of Nanomedicine | 2012

A comparative evaluation of coenzyme Q10-loaded liposomes and solid lipid nanoparticles as dermal antioxidant carriers

Evren Homan Gökçe; Emrah Korkmaz; Sakine Tuncay-Tanrıverdi; Eleonora Dellera; Giuseppina Sandri; M. Cristina Bonferoni; Özgen Özer

Background The effective delivery of coenzyme Q10 (Q10) to the skin has several benefits in therapy for different skin pathologies. However, the delivery of Q10 to deeper layers of skin is challenging due to low aqueous solubility of Q10. Liposomes and solid lipid nanoparticles (SLN) have many advantages to accomplish the requirements in topical drug delivery. This study aims to evaluate the influence of these nanosystems on the effective delivery of Q10 into the skin. Methods Q10-loaded liposomes (LIPO-Q10) and SLNs (SLN-Q10) were prepared by thin film hydration and high shear homogenization methods, respectively. Particle size (PS), polydispersity index (PI), zeta potential (ZP), and drug entrapment efficiency were determined. Differential scanning calorimetry analysis and morphological transmission electron microscopy (TEM) examination were conducted. Biocompatibility/cytotoxicity studies of Q10-loaded nanosystems were performed by means of cell culture (human fibroblasts) under oxidative conditions. The protective effect of formulations against production of reactive oxygen species were comparatively evaluated by cytofluorometry studies. Results PS of uniform SLN-Q10 and LIPO-Q10 were determined as 152.4 ± 7.9 nm and 301.1 ± 8.2 nm, respectively. ZPs were −13.67 ± 1.32 mV and −36.6 ± 0.85 mV in the same order. The drug entrapment efficiency was 15% higher in SLN systems. TEM studies confirmed the colloidal size. SLN-Q10 and LIPO-Q10 showed biocompatibility towards fibroblasts up to 50 μM of Q10, which was determined as suitable for cell proliferation. The mean fluorescence intensity % depending on ROS production determined in cytofluorometric studies could be listed as Q10 ≥ SLN-Q10 > LIPO-Q10. Conclusion The LIPO-Q10 system was able to enhance cell proliferation. On the contrary, SLN-Q10 did not show protective effects against ROS accumulation. As a conclusion, liposomes seem to have advantages over SLN in terms of effective delivery of Q10 to skin for antioxidant purposes.


International Journal of Nanomedicine | 2013

Enhanced dermal delivery of diflucortolone valerate using lecithin/chitosan nanoparticles: in-vitro and in-vivo evaluations

İpek Özcan; Erkan Azizoğlu; Taner Şenyiğit; Mine Özyazıcı; Özgen Özer

The objective of this study was to prepare a suitable formulation for dermal delivery of diflucortolone valerate (DFV) that would maintain the localization in skin layers without any penetration and to optimize efficiency of DFV. Drug-loaded lecithin/chitosan nanoparticles with high entrapment efficiency (86.8%), were successfully prepared by ionic interaction technique. Sustained release of DFV was achieved without any initial burst release. Nanoparticles were also incorporated into chitosan gel at different ratios for preparing a more suitable formulation for topical drug delivery with adequate viscosity. In ex-vivo permeation studies, nanoparticles increased the accumulation of DFV especially in the stratum corneum + epidermis of rat skin without any significant permeation. Retention of DFV from nanoparticle in chitosan gel formulation (0.01%) was twofold higher than commercial cream, although it contained ten times less DFV. Nanoparticles in gel formulations produced significantly higher edema inhibition in rats compared with commercial cream in in-vivo studies. Skin blanching assay using a chromameter showed vasoconstriction similar to that of the commercial product. There were no barrier function changes upon application of nanoparticles. In-vitro and in-vivo results demonstrated that lecithin/chitosan nanoparticles in chitosan gel may be a promising carrier for dermal delivery of DFV in various skin disorders.


International Journal of Nanomedicine | 2010

Pegylation of poly(γ-benzyl-L-glutamate) nanoparticles is efficient for avoiding mononuclear phagocyte system capture in rats.

İpek Özcan; Freimar Segura-Sánchez; Kawthar Bouchemal; Murat Sezak; Özgen Özer; Tamer Güneri; Gilles Ponchel

Poly(γ-benzyl-L-glutamate) (PBLG) derivatives are synthetic polypeptides for preparing nanoparticles with well controlled surface properties. The aim of this paper was to investigate the biodistribution of pegylated PBLG in rats. For this purpose, nanoparticles were prepared by a nanoprecipitation method using mixtures of different PBLG derivates, including a pegylated derivate to avoid mononuclear phagocyte system uptake. The morphology, size distribution, and surface charge of the nanoparticles were investigated as a function of the amount of polymer employed for the preparation. Moderately polydispersed nanoparticles (polydispersity index less than 0.2) were obtained. Their size increased with polymer concentration. The zeta potential values were negative whatever the formulations. The availability of polyethylene glycol chains on the nanoparticles’ surface was confirmed by measuring the decrease in bovine serum albumin adsorption. For in vivo distribution studies, pegylated and nonpegylated nanoparticles were prepared with polymer mixtures containing PBLG-fluorescein isothiocyanate and imaged by fluorescence microscopy to measure their accumulation in liver and spleen tissues of rats after intravenous administration. Injection of stealth formulations resulted in negligible fluorescence in liver and spleen compared with nonpegylated formulations, which suggests that these nanoparticles are promising candidates as a stealth-type long-circulating drug carrier system and could be useful for active targeting of drugs while reducing systemic side effects.

Collaboration


Dive into the Özgen Özer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge