Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where P. A. Evans is active.

Publication


Featured researches published by P. A. Evans.


Monthly Notices of the Royal Astronomical Society | 2009

Methods and results of an automatic analysis of a complete sample of Swift-XRT observations of GRBs

P. A. Evans; A. P. Beardmore; Kim L. Page; J. P. Osborne; Paul T. O'Brien; R. Willingale; Rhaana L. C. Starling; D. N. Burrows; Olivier Godet; L. Vetere; Judith Lea Racusin; Mike R. Goad; K. Wiersema; L. Angelini; Milvia Capalbi; Guido Chincarini; Neil Gehrels; J. A. Kennea; Raffaella Margutti; D. C. Morris; C. J. Mountford; C. Pagani; Matteo Perri; Patrizia Romano; Nial R. Tanvir

We present a homogeneous X-ray analysis of all 318 gamma-ray bursts detected by the X-ray telescope (XRT) on the Swift satellite up to 2008 July 23; this represents the largest sample of X-ray GRB data published to date. In Sections 2-3, we detail the methods which the Swift-XRT team has developed to produce the enhanced positions, light curves, hardness ratios and spectra presented in this paper. Software using these methods continues to create such products for all new GRBs observed by the Swift-XRT. We also detail web-based tools allowing users to create these products for any object observed by the XRT, not just GRBs. In Sections 4-6, we present the results of our analysis of GRBs, including probability distribution functions of the temporal and spectral properties of the sample. We demonstrate evidence for a consistent underlying behaviour which can produce a range of light-curve morphologies, and attempt to interpret this behaviour in the framework of external forward shock emission. We find several difficulties, in particular that reconciliation of our data with the forward shock model requires energy injection to continue for days to weeks.


Nature | 2011

Relativistic jet activity from the tidal disruption of a star by a massive black hole

David N. Burrows; J. A. Kennea; G. Ghisellini; Vanessa Mangano; Bing Zhang; Kim L. Page; M. Eracleous; Patrizia Romano; T. Sakamoto; A. Falcone; J. P. Osborne; Sergio Campana; A. P. Beardmore; Alice A. Breeveld; M. M. Chester; R. Corbet; S. Covino; J. R. Cummings; Paolo D'Avanzo; Valerio D'Elia; P. Esposito; P. A. Evans; Dino Fugazza; Jonathan Mark Gelbord; Kazuo Hiroi; S. T. Holland; Kuiyun Huang; Myungshin Im; G. L. Israel; Young-Beom Jeon

Supermassive black holes have powerful gravitational fields with strong gradients that can destroy stars that get too close, producing a bright flare in ultraviolet and X-ray spectral regions from stellar debris that forms an accretion disk around the black hole. The aftermath of this process may have been seen several times over the past two decades in the form of sparsely sampled, slowly fading emission from distant galaxies, but the onset of the stellar disruption event has not hitherto been observed. Here we report observations of a bright X-ray flare from the extragalactic transient Swift J164449.3+573451. This source increased in brightness in the X-ray band by a factor of at least 10,000 since 1990 and by a factor of at least 100 since early 2010. We conclude that we have captured the onset of relativistic jet activity from a supermassive black hole. A companion paper comes to similar conclusions on the basis of radio observations. This event is probably due to the tidal disruption of a star falling into a supermassive black hole, but the detailed behaviour differs from current theoretical models of such events.D. N. Burrows , J. A. Kennea , G. Ghisellini , V. Mangano , B. Zhang , K. L. Page , M. Eracleous , P. Romano , T. Sakamoto , A. D. Falcone , J. P. Osborne , S. Campana , A. P. Beardmore , A. A. Breeveld , M. M. Chester , R. Corbet , S. Covino , J. R. Cummings , P. D’Avanzo , V. D’Elia , P. Esposito , P. A. Evans , D. Fugazza, J. M. Gelbord , K. Hiroi , S. T. Holland , K. Y. Huang , M. Im, G. Israel , Y. Jeon , Y.-B. Jeon , N. Kawai , H. A. Krimm , P. Mészáros , H. Negoro , N. Omodei , W.K. Park , J. S. Perkins , M. Sugizaki , H.-I. Sung , G. Tagliaferri , E. Troja , Y. Ueda, Y. Urata, R. Usui , L. A. Antonelli , S. D. Barthelmy , G. Cusumano , P. Giommi , F. E. Marshall , A. Melandri , M. Perri , J. L. Racusin , B. Sbarufatti , M. H. Siegel , & N. Gehrels 21


Nature | 2011

Relativistic jet activity from the tidal disruption of a star by a massive black hole [Discovery of the onset of rapid accretion by a dormant massive black hole]

D. N. Burrows; J. A. Kennea; G. Ghisellini; Vanessa Mangano; Bin-Bin Zhang; Kim L. Page; M. Eracleous; Patrizia Romano; T. Sakamoto; A. Falcone; J. P. Osborne; S. Campana; A. P. Beardmore; Alice A. Breeveld; M. M. Chester; R. Corbet; S. Covino; J. R. Cummings; Paolo D'Avanzo; Valerio D'Elia; P. Esposito; P. A. Evans; Dino Fugazza; Jonathan Mark Gelbord; Kazuo Hiroi; S. T. Holland; Kuiyun Huang; Myungshin Im; G. L. Israel; Young-Beom Jeon

Supermassive black holes have powerful gravitational fields with strong gradients that can destroy stars that get too close, producing a bright flare in ultraviolet and X-ray spectral regions from stellar debris that forms an accretion disk around the black hole. The aftermath of this process may have been seen several times over the past two decades in the form of sparsely sampled, slowly fading emission from distant galaxies, but the onset of the stellar disruption event has not hitherto been observed. Here we report observations of a bright X-ray flare from the extragalactic transient Swift J164449.3+573451. This source increased in brightness in the X-ray band by a factor of at least 10,000 since 1990 and by a factor of at least 100 since early 2010. We conclude that we have captured the onset of relativistic jet activity from a supermassive black hole. A companion paper comes to similar conclusions on the basis of radio observations. This event is probably due to the tidal disruption of a star falling into a supermassive black hole, but the detailed behaviour differs from current theoretical models of such events.D. N. Burrows , J. A. Kennea , G. Ghisellini , V. Mangano , B. Zhang , K. L. Page , M. Eracleous , P. Romano , T. Sakamoto , A. D. Falcone , J. P. Osborne , S. Campana , A. P. Beardmore , A. A. Breeveld , M. M. Chester , R. Corbet , S. Covino , J. R. Cummings , P. D’Avanzo , V. D’Elia , P. Esposito , P. A. Evans , D. Fugazza, J. M. Gelbord , K. Hiroi , S. T. Holland , K. Y. Huang , M. Im, G. Israel , Y. Jeon , Y.-B. Jeon , N. Kawai , H. A. Krimm , P. Mészáros , H. Negoro , N. Omodei , W.K. Park , J. S. Perkins , M. Sugizaki , H.-I. Sung , G. Tagliaferri , E. Troja , Y. Ueda, Y. Urata, R. Usui , L. A. Antonelli , S. D. Barthelmy , G. Cusumano , P. Giommi , F. E. Marshall , A. Melandri , M. Perri , J. L. Racusin , B. Sbarufatti , M. H. Siegel , & N. Gehrels 21


Nature | 2009

A γ-ray burst at a redshift of z ≈ 8.2

Nial R. Tanvir; Derek B. Fox; Andrew J. Levan; Edo Berger; K. Wiersema; J. P. U. Fynbo; A. Cucchiara; T. Krühler; N. Gehrels; J. S. Bloom; J. Greiner; P. A. Evans; E. Rol; F. E. Olivares; J. Hjorth; P. Jakobsson; J. Farihi; R. Willingale; Rhaana L. C. Starling; S. B. Cenko; Daniel A. Perley; Justyn R. Maund; J. Duke; R. A. M. J. Wijers; Andrew J. Adamson; A. Allan; M. N. Bremer; D. N. Burrows; A. J. Castro-Tirado; B. Cavanagh

Long-duration gamma-ray bursts (GRBs) are thought to result from the explosions of certain massive stars, and some are bright enough that they should be observable out to redshifts of z > 20 using current technology. Hitherto, the highest redshift measured for any object was z = 6.96, for a Lyman-alpha emitting galaxy. Here we report that GRB 090423 lies at a redshift of z approximately 8.2, implying that massive stars were being produced and dying as GRBs approximately 630 Myr after the Big Bang. The burst also pinpoints the location of its host galaxy.It is thought that the first generations of massive stars in the Universe were an important, and quite possibly dominant, source of the ultra-violet radiation that reionized the hydrogen gas in the intergalactic medium (IGM); a state in which it has remained to the present day. Measurements of cosmic microwave background anisotropies suggest that this phase-change largely took place in the redshift range z=10.8 +/- 1.4, while observations of quasars and Lyman-alpha galaxies have shown that the process was essentially completed by z=6. However, the detailed history of reionization, and characteristics of the stars and proto-galaxies that drove it, remain unknown. Further progress in understanding requires direct observations of the sources of ultra-violet radiation in the era of reionization, and mapping the evolution of the neutral hydrogen fraction through time. The detection of galaxies at such redshifts is highly challenging, due to their intrinsic faintness and high luminosity distance, whilst bright quasars appear to be rare beyond z~7. Here we report the discovery of a gamma-ray burst, GRB 090423, at redshift z=8.26 -0.08 +0.07. This is well beyond the redshift of the most distant spectroscopically confirmed galaxy (z=6.96) and quasar (z=6.43). It establishes that massive stars were being produced, and dying as GRBs, ~625 million years after the Big Bang. In addition, the accurate position of the burst pinpoints the location of the most distant galaxy known to date. Larger samples of GRBs beyond z~7 will constrain the evolving rate of star formation in the early universe, while rapid spectroscopy of their afterglows will allow direct exploration of the progress of reionization with cosmic time.Long-duration γ-ray bursts (GRBs) are thought to result from the explosions of certain massive stars, and some are bright enough that they should be observable out to redshifts of z > 20 using current technology. Hitherto, the highest redshift measured for any object was z = 6.96, for a Lyman-α emitting galaxy. Here we report that GRB 090423 lies at a redshift of z ≈ 8.2, implying that massive stars were being produced and dying as GRBs ∼630 Myr after the Big Bang. The burst also pinpoints the location of its host galaxy.


Astrophysical Journal Supplement Series | 2010

The 22-Month Swift-BAT All-Sky Hard X-ray Survey

J. Tueller; W. H. Baumgartner; Craig B. Markwardt; G. K. Skinner; R. F. Mushotzky; M. Ajello; S. D. Barthelmy; A. P. Beardmore; W. N. Brandt; D. N. Burrows; Guido Chincarini; Sergio Campana; J. R. Cummings; G. Cusumano; P. A. Evans; E. E. Fenimore; N. Gehrels; Olivier Godet; Dirk Grupe; S. T. Holland; J. A. Kennea; Hans A. Krimm; M. Koss; A. Moretti; Koji Mukai; J. P. Osborne; Takashi Okajima; Claudio Pagani; Kim L. Page; David M. Palmer

We present the catalog of sources detected in the first 22 months of data from the hard X-ray survey (14-195 keV) conducted with the Burst Alert Telescope (BAT) coded mask imager on the Swift satellite. The catalog contains 461 sources detected above the 4.8σ level with BAT. High angular resolution X-ray data for every source from Swift-XRT or archival data have allowed associations to be made with known counterparts in other wavelength bands for over 97% of the detections, including the discovery of ~30 galaxies previously unknown as active galactic nuclei and several new Galactic sources. A total of 266 of the sources are associated with Seyfert galaxies (median redshift z ~ 0.03) or blazars, with the majority of the remaining sources associated with X-ray binaries in our Galaxy. This ongoing survey is the first uniform all-sky hard X-ray survey since HEAO-1 in 1977. Since the publication of the nine-month BAT survey we have increased the number of energy channels from four to eight and have substantially increased the number of sources with accurate average spectra. The BAT 22 month catalog is the product of the most sensitive all-sky survey in the hard X-ray band, with a detection sensitivity (4.8σ) of 2.2 × 10–11 erg cm–2 s–1 (1 mCrab) over most of the sky in the 14-195 keV band.


The Astrophysical Journal | 2009

JET BREAKS AND ENERGETICS OF Swift GAMMA-RAY BURST X-RAY AFTERGLOWS

Judith Lea Racusin; En-Wei Liang; David N. Burrows; A. Falcone; Takanori Sakamoto; Bin-Bin Zhang; Bing Zhang; P. A. Evans; J. P. Osborne

We present a systematic temporal and spectral study of all Swift-X-ray Telescope observations of gamma-ray burst (GRB) afterglows discovered between 2005 January and 2007 December. After constructing and fitting all light curves and spectra to power-law models, we classify the components of each afterglow in terms of the canonical X-ray afterglow and test them against the closure relations of the forward shock models for a variety of parameter combinations. The closure relations are used to identify potential jet breaks with characteristics including the uniform jet model with and without lateral spreading and energy injection, and a power-law structured jet model, all with a range of parameters. With this technique, we survey the X-ray afterglows with strong evidence for jet breaks (∼12% of our sample), and reveal cases of potential jet breaks that do not appear plainly from the light curve alone (another ∼30%), leading to insight into the missing jet break problem. Those Xray light curves that do not show breaks or have breaks that are not consistent with one of the jet models are explored to place limits on the times of unseen jet breaks. The distribution of jet break times ranges from a few hours to a few weeks with a median of ∼1 day, similar to what was found pre-Swift. On average, Swift GRBs have lower isotropic equivalent γ -ray energies, which in turn result in lower collimation corrected γ -ray energies than those of pre-Swift GRBs. Finally, we explore the implications for GRB jet geometry and energetics.


Nature | 2008

Broadband observations of the naked-eye gamma-ray burst GRB 080319B

Judith Lea Racusin; S. V. Karpov; Marcin Sokolowski; Jonathan Granot; Xue-Feng Wu; V. Pal’shin; S. Covino; A. J. van der Horst; S. R. Oates; Patricia Schady; R. J. E. Smith; J. R. Cummings; Rhaana L. C. Starling; Lech Wiktor Piotrowski; Bin-Bin Zhang; P. A. Evans; S. T. Holland; K. Malek; M. T. Page; L. Vetere; R. Margutti; C. Guidorzi; Atish Kamble; P. A. Curran; A. P. Beardmore; C. Kouveliotou; Lech Mankiewicz; Andrea Melandri; P. T. O’Brien; Kim L. Page

Long-duration γ-ray bursts (GRBs) release copious amounts of energy across the entire electromagnetic spectrum, and so provide a window into the process of black hole formation from the collapse of massive stars. Previous early optical observations of even the most exceptional GRBs (990123 and 030329) lacked both the temporal resolution to probe the optical flash in detail and the accuracy needed to trace the transition from the prompt emission within the outflow to external shocks caused by interaction with the progenitor environment. Here we report observations of the extraordinarily bright prompt optical and γ-ray emission of GRB 080319B that provide diagnostics within seconds of its formation, followed by broadband observations of the afterglow decay that continued for weeks. We show that the prompt emission stems from a single physical region, implying an extremely relativistic outflow that propagates within the narrow inner core of a two-component jet.


Monthly Notices of the Royal Astronomical Society | 2011

Discovery of the nearby long, soft GRB 100316D with an associated supernova

Rhaana L. C. Starling; K. Wiersema; Andrew J. Levan; Takanori Sakamoto; D. F. Bersier; Paolo Goldoni; S. R. Oates; A. Rowlinson; Sergio Campana; Jesper Sollerman; Nial R. Tanvir; Daniele Malesani; Johan Peter Uldall Fynbo; S. Covino; Paolo D'Avanzo; Paul T. O'Brien; Kim L. Page; J. P. Osborne; S. D. Vergani; S. Barthelmy; D. N. Burrows; Z. Cano; P. A. Curran; M. De Pasquale; Valerio D'Elia; P. A. Evans; H. Flores; Andrew S. Fruchter; Peter Marcus Garnavich; N. Gehrels

We report the Swift discovery of the nearby long, soft gamma-ray burst GRB 100316D, and the subsequent unveiling of its low-redshift host galaxy and associated supernova. We derive the redshift of the event to be z = 0.0591 +/- 0.0001 and provide accurate astrometry for the gamma-ray burst (GRB) supernova (SN). We study the extremely unusual prompt emission with time-resolved gamma-ray to X-ray spectroscopy and find that the spectrum is best modelled with a thermal component in addition to a synchrotron emission component with a low peak energy. The X-ray light curve has a remarkably shallow decay out to at least 800 s. The host is a bright, blue galaxy with a highly disturbed morphology and we use Gemini-South, Very Large Telescope and Hubble Space Telescope observations to measure some of the basic host galaxy properties. We compare and contrast the X-ray emission and host galaxy of GRB 100316D to a subsample of GRB-SNe. GRB 100316D is unlike the majority of GRB-SNe in its X-ray evolution, but resembles rather GRB 060218, and we find that these two events have remarkably similar high energy prompt emission properties. Comparison of the host galaxies of GRB-SNe demonstrates, however, that there is a great diversity in the environments in which GRB-SNe can be found. GRB 100316D is an important addition to the currently sparse sample of spectroscopically confirmed GRB-SNe, from which a better understanding of long GRB progenitors and the GRB-SN connection can be gleaned.


Scopus | 2011

Discovery of the nearby long, soft GRB100316D with an associated supernova

Randall C. Starling; K. Wiersema; A. Rowlinson; Nial R. Tanvir; Paul T. O'Brien; Kim L. Page; J. P. Osborne; P. A. Evans; C. P. Hurkett; Andrew J. Levan; T. Sakamoto; S. T. Holland; N. Gehrels; M. Stamatikos; D. F. Bersier; Z. Cano; Paolo Goldoni; S. R. Oates; P. A. Curran; M. De Pasquale; N. P. M. Kuin; Sergio Campana; S. Covino; Paolo D'Avanzo; C. C. Thöne; Jesper Sollerman; Daniele Malesani; J. P. U. Fynbo; J. Hjorth; S. D. Vergani

We report the Swift discovery of the nearby long, soft gamma-ray burst GRB 100316D, and the subsequent unveiling of its low-redshift host galaxy and associated supernova. We derive the redshift of the event to be z = 0.0591 +/- 0.0001 and provide accurate astrometry for the gamma-ray burst (GRB) supernova (SN). We study the extremely unusual prompt emission with time-resolved gamma-ray to X-ray spectroscopy and find that the spectrum is best modelled with a thermal component in addition to a synchrotron emission component with a low peak energy. The X-ray light curve has a remarkably shallow decay out to at least 800 s. The host is a bright, blue galaxy with a highly disturbed morphology and we use Gemini-South, Very Large Telescope and Hubble Space Telescope observations to measure some of the basic host galaxy properties. We compare and contrast the X-ray emission and host galaxy of GRB 100316D to a subsample of GRB-SNe. GRB 100316D is unlike the majority of GRB-SNe in its X-ray evolution, but resembles rather GRB 060218, and we find that these two events have remarkably similar high energy prompt emission properties. Comparison of the host galaxies of GRB-SNe demonstrates, however, that there is a great diversity in the environments in which GRB-SNe can be found. GRB 100316D is an important addition to the currently sparse sample of spectroscopically confirmed GRB-SNe, from which a better understanding of long GRB progenitors and the GRB-SN connection can be gleaned.


The Astrophysical Journal | 2007

GRB 061121: Broadband Spectral Evolution through the Prompt and Afterglow Phases of a Bright Burst

Kim L. Page; R. Willingale; Julian P. Osborne; Bing Zhang; Olivier Godet; F. E. Marshall; Andrea Melandri; J. P. Norris; P. T. O’Brien; V. Pal’shin; E. Rol; Patrizia Romano; Rhaana L. C. Starling; Patricia Schady; S. A. Yost; S. D. Barthelmy; A. P. Beardmore; G. Cusumano; D. N. Burrows; M. De Pasquale; M. Ehle; P. A. Evans; Neil Gehrels; Mike R. Goad; S. Golenetskii; C. Guidorzi; Carole G. Mundell; M. J. Page; George R. Ricker; Takanori Sakamoto

Swift triggered on a precursor to the main burst of GRB 061121 (z = 1.314), allowing observations to be made from the optical to gamma-ray bands. Many other telescopes, including Konus-Wind, XMM-Newton, ROTSE, and the Faulkes Telescope North, also observed the burst. The gamma-ray, X-ray, and UV/optical emission all showed a peak ~75 s after the trigger, although the optical and X-ray afterglow components also appear early on, before or during the main peak. Spectral evolution was seen throughout the burst, with the prompt emission showing a clear positive correlation between brightness and hardness. The SED of the prompt emission, stretching from 1 eV up to 1 MeV, is very flat, with a peak in the flux density at ~ 1 keV. The optical to X-ray spectra at this time are better fitted by a broken, rather than single, power law, similar to previous results for X-ray flares. The SED shows spectral hardening as the afterglow evolves with time. This behavior might be a symptom of self-Comptonization, although circumstellar densities similar to those found in the cores of molecular clouds would be required. The afterglow also decays too slowly to be accounted for by the standard models. Although the precursor and main emission show different spectral lags, both are consistent with the lag-luminosity correlation for long bursts. GRB 061121 is the instantaneously brightest long burst yet detected by Swift. Using a combination of Swift and Konus-Wind data, we estimate an isotropic energy of 2.8 × 1053 ergs over 1 keV-10 MeV in the GRB rest frame. A probable jet break is detected at ~2 × 105 s, leading to an estimate of ~10 51 ergs for the beaming-corrected gamma-ray energy.

Collaboration


Dive into the P. A. Evans's collaboration.

Top Co-Authors

Avatar

Mike R. Goad

University of Leicester

View shared research outputs
Top Co-Authors

Avatar

Kim L. Page

University of Leicester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. A. Kennea

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

N. Gehrels

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

D. M. Palmer

Universities Space Research Association

View shared research outputs
Top Co-Authors

Avatar

S. T. Holland

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

S. D. Barthelmy

Goddard Space Flight Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge