Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where P.A. Politzer is active.

Publication


Featured researches published by P.A. Politzer.


Review of Scientific Instruments | 1990

Motional Stark effect polarimetry for a current profile diagnostic in DIII-D

D. Wróblewski; K.H. Burrell; L. L. Lao; P.A. Politzer; W.P. West

Motional Stark effect produces large net linear polarization of Hα emission from neutral beams in tokamaks. Measurement of the polarization direction permits determination of the local magnetic field pitch angle. Design of a single point, spatially scannable, high‐sensitivity polarimeter installed on DIII‐D is described. Excellent signal‐to‐noise ratio with good temporal and spatial resolution was obtained in preliminary measurements of magnetic field pitch angle.


Physics of Plasmas | 2006

Progress toward fully noninductive, high beta conditions in DIII-D

M. Murakami; M. R. Wade; C. M. Greenfield; T.C. Luce; J.R. Ferron; H.E. St. John; J.C. DeBoo; W.W. Heidbrink; Y. Luo; M. A. Makowski; T.H. Osborne; C. C. Petty; P.A. Politzer; S.L. Allen; M. E. Austin; K.H. Burrell; T. A. Casper; E. J. Doyle; A. M. Garofalo; P. Gohil; I.A. Gorelov; R. J. Groebner; A.W. Hyatt; R. J. Jayakumar; K. Kajiwara; C. Kessel; J.E. Kinsey; R.J. La Haye; L. L. Lao; A.W. Leonard

The DIII-D Advanced Tokamak (AT) program in the DIII-D tokamak [J. L. Luxon, Plasma Physics and Controlled Fusion Research, 1986, Vol. I (International Atomic Energy Agency, Vienna, 1987), p. 159] is aimed at developing a scientific basis for steady-state, high-performance operation in future devices. This requires simultaneously achieving 100% noninductive operation with high self-driven bootstrap current fraction and toroidal beta. Recent progress in this area includes demonstration of 100% noninductive conditions with toroidal beta, βT=3.6%, normalized beta, βN=3.5, and confinement factor, H89=2.4 with the plasma current driven completely by bootstrap, neutral beam current drive, and electron cyclotron current drive (ECCD). The equilibrium reconstructions indicate that the noninductive current profile is well aligned, with little inductively driven current remaining anywhere in the plasma. The current balance calculation improved with beam ion redistribution that was supported by recent fast ion diagno...


Plasma Physics and Controlled Fusion | 1994

Optimized profiles for improved confinement and stability in the DIII-D tokamak

T.S. Taylor; H.E. St. John; Alan D. Turnbull; V R Lin-Liu; K.H. Burrell; V.S. Chan; M. S. Chu; J.R. Ferron; L. L. Lao; R.J. La Haye; E. A. Lazarus; R. L. Miller; P.A. Politzer; D.P. Schissel; E. J. Strait

Simultaneous achievement of high energy confinement, tau E, and high plasma beta, beta , leads to an economically attractive compact tokamak fusion reactor. High confinement enhancement, H= tau E/ tau E-ITER89P=4, and high normalized beta beta N beta /(I/aB)=6%-m-T/MA have been obtained in DIII-D experimental discharges. These improved confinement and/or improved stability limits are observed in several DIII-D high performance operational regimes: VH-mode, high li H-mode, second stable core, and high beta poloidal. We have identified several important features of the improved performance in these discharges: details of the plasma shape, toroidal rotation or E*B flow profile, q profile and current density profile, and pressure profile. From our improved physics understanding of these enhanced performance regimes, we have developed operational scenarios which maintain the essential features of the improved confinement and which increase the stability limits using localized current profile control. The stability limit is increased by modifying the interior safety factor profile to be nonmonotonic with high central q, while maintaining the edge current density consistent with the improved transport regimes and the high edge bootstrap current. We have calculated high beta equilibria with beta N=6.5, stable to ideal n=1 kinks and stable to ideal ballooning modes. The safety factor at the 95% flux surface is 6, the central q value is 3.9 and the minimum in q is 2.6.


Nuclear Fusion | 2003

Stationary high-performance discharges in the DIII-D tokamak

T.C. Luce; M.R. Wade; J.R. Ferron; A.W. Hyatt; A. G. Kellman; J.E. Kinsey; R.J. La Haye; C.J. Lasnier; M. Murakami; P.A. Politzer; J. T. Scoville

Discharges which can satisfy the high gain goals of burning plasma experiments have been demonstrated in the DIII-D tokamak under stationary conditions at relatively low plasma current (q95>4). A figure of merit for fusion gain (?NH89/q952) has been maintained at values corresponding to Q = 10 operation in a burning plasma for >6?s or 36?E and 2?R. The key element is the relaxation of the current profile to a stationary state with qmin>1. In the absence of sawteeth and fishbones, stable operation has been achieved up to the estimated no-wall ? limit. Feedback control of the energy content and particle inventory allow reproducible, stationary operation. The particle inventory is controlled by gas fuelling and active pumping; the wall plays only a small role in the particle balance. The reduced current lessens significantly the potential for structural damage in the event of a major disruption. In addition, the pulse length capability is greatly increased, which is essential for a technology testing phase of a burning plasma experiment where fluence (duty cycle) is important.


Nuclear Fusion | 2009

Off-axis neutral beam current drive for advanced scenario development in DIII-D

M. Murakami; Jin Myung Park; C. C. Petty; T.C. Luce; W.W. Heidbrink; T.H. Osborne; R. Prater; M. R. Wade; P.M. Anderson; M. E. Austin; N.H. Brooks; R.V. Budny; C. Challis; J.C. DeBoo; J.S. deGrassie; J.R. Ferron; P. Gohil; J. Hobirk; C.T. Holcomb; E.M. Hollmann; R.-M. Hong; A.W. Hyatt; J. Lohr; M. J. Lanctot; M. A. Makowski; D. McCune; P.A. Politzer; J. T. Scoville; H.E. St. John; T. Suzuki

Modification of the two existing DIII-D neutral beamlines is planned to allow vertical steering to provide off-axis neutral beam current drive (NBCD) peaked as far off-axis as half the plasma minor radius. New calculations for a downward-steered beam indicate strong current drive with good localization off-axis so long as the toroidal magnetic field, BT, and the plasma current, Ip, point in the same direction. This is due to good alignment of neutral beam injection (NBI) with the local pitch of the magnetic field lines. This model has been tested experimentally on DIII-D by injecting equatorially mounted NBs into reduced size plasmas that are vertically displaced with respect to the vessel midplane. The existence of off-axis NBCD is evident in the changes seen in sawtooth behaviour in the internal inductance. By shifting the plasma upwards or downwards, or by changing the sign of the toroidal field, off-axis NBCD profiles measured with motional Stark effect data and internal loop voltage show a difference in amplitude (40–45%) consistent with differences predicted by the changed NBI alignment with respect to the helicity of the magnetic field lines. The effects of NBI direction relative to field line helicity can be large even in ITER: off-axis NBCD can be increased by more than 30% if the BT direction is reversed. Modification of the DIII-D NB system will strongly support scenario development for ITER and future tokamaks as well as provide flexible scientific tools for understanding transport, energetic particles and heating and current drive.


Physics of Plasmas | 2000

Understanding and control of transport in Advanced Tokamak regimes in DIII-D

C. M. Greenfield; J.C. DeBoo; T.C. Luce; B. W. Stallard; E. J. Synakowski; L. R. Baylor; K.H. Burrell; T. A. Casper; E. J. Doyle; Daniel R. Ernst; J.R. Ferron; P. Gohil; R. J. Groebner; L. L. Lao; Ma Makowski; G. R. McKee; M. Murakami; C. C. Petty; R. I. Pinsker; P.A. Politzer; R. Prater; C. L. Rettig; T. L. Rhodes; B. W. Rice; G. L. Schmidt; G. M. Staebler; E. J. Strait; D. M. Thomas; M. R. Wade; Diii-D Team

Transport phenomena are studied in Advanced Tokamak (AT) regimes in the DIII-D tokamak [Plasma Physics and Controlled Nuclear Fusion Research, 1986 (International Atomics Energy Agency, Vienna, 1987), Vol. I, p. 159], with the goal of developing understanding and control during each of three phases: Formation of the internal transport barrier (ITB) with counter neutral beam injection taking place when the heating power exceeds a threshold value of about 9 MW, contrasting to co-NBI injection, where Pthreshold<2.5 MW. Expansion of the ITB is enhanced compared to similar co-injected discharges. Both differences are believed to arise from modification of the E×B shear dynamics when the sign of the rotation contribution is reversed. Sustainment of an AT regime with βNH89=9 for 16 confinement times has been accomplished in a discharge combining an ELMing H-mode (edge localized, high confinement mode) edge and an ITB, and exhibiting ion thermal transport down to 2–3 times neoclassical. The microinstabilities usu...


Fusion Engineering and Design | 2006

Physics basis for the advanced tokamak fusion power plant, ARIES-AT

Stephen C. Jardin; C. Kessel; T.K. Mau; R.L. Miller; F. Najmabadi; V.S. Chan; M. S. Chu; Rj Lahaye; L. L. Lao; T.W. Petrie; P.A. Politzer; H.E. St. John; P.B. Snyder; G. M. Staebler; Alan D. Turnbull; W.P. West

Abstract The advanced tokamak is considered as the basis for a fusion power plant. The ARIES-AT design has an aspect ratio of A ≡ R / a = 4.0 , an elongation and triangularity of κ = 2.20 , δ = 0.90 (evaluated at the separatrix surface), a toroidal beta of β = 9.1 % (normalized to the vacuum toroidal field at the plasma center), which corresponds to a normalized beta of β N ≡ 100 × β / ( I P ( M A ) / a ( m ) B ( T ) ) = 5.4 . These beta values are chosen to be 10% below the ideal MHD stability limit. The bootstrap-current fraction is f BS ≡ I BS / I P = 0.91 . This leads to a design with total plasma current I P = 12.8  MA, and toroidal field of 11.1 T (at the coil edge) and 5.8 T (at the plasma center). The major and minor radii are 5.2 and 1.3 m. The effects of H-mode edge gradients and the stability of this configuration to non-ideal modes is analyzed. The current drive system consists of ICRF/FW for on-axis current drive and a Lower Hybrid system for off-axis. Transport projections are presented using the drift-wave based GLF23 model. The approach to power and particle exhaust using both plasma core and scrape-off-layer radiation is presented.


Nuclear Fusion | 2006

Feedback control of the safety factor profile evolution during formation of an advanced tokamak discharge

J.R. Ferron; P. Gohil; C. M. Greenfield; J. Lohr; T.C. Luce; M. A. Makowski; M. Murakami; C. C. Petty; P.A. Politzer; M. R. Wade

Active feedback control for regulation of the safety factor (q) profile at the start of the high stored energy phase of an advanced tokamak discharge has been demonstrated in the DIII-D tokamak. The time evolution of the on-axis or minimum value of q is controlled during and just following the period of ramp-up of the plasma current using electron heating to modify the rate of relaxation of the current profile. In L-mode and H-mode discharges, feedback control of q is effective with the appropriate choice of either off-axis electron cyclotron heating or neutral beam heating as the actuator. The q profile is calculated in real time from a complete equilibrium reconstruction fitted to external magnetic field and flux measurements and internal poloidal field measurements from the motional Stark effect diagnostic.


Physics of Plasmas | 2006

Access to sustained high-beta with internal transport barrier and negative central magnetic shear in DIII-D

A. M. Garofalo; E. J. Doyle; J. R. Ferron; C. M. Greenfield; R. J. Groebner; A.W. Hyatt; G.L. Jackson; R. J. Jayakumar; J.E. Kinsey; R.J. La Haye; G.R. McKee; M. Murakami; M. Okabayashi; T.H. Osborne; C. C. Petty; P.A. Politzer; H. Reimerdes; J. T. Scoville; W. M. Solomon; H. E. St. John; E. J. Strait; Alan D. Turnbull; M. R. Wade; M. A. VanZeeland

High values of normalized β (βN∼4) and safety factor (qmin∼2) have been sustained simultaneously for ∼2s in DIII-D [J.L. Luxon, Nucl. Fusion 42, 64 (2002)], suggesting a possible path to high fusion performance, steady-state tokamak scenarios with a large fraction of bootstrap current. The combination of internal transport barrier and negative central magnetic shear at high β results in high confinement (H89P>2.5) and large bootstrap current fraction (fBS>60%) with good alignment. Previously, stability limits in plasmas with core transport barriers have been observed at moderate values of βN (<3) because of the pressure peaking which normally develops from improved core confinement. In recent DIII-D experiments, the internal transport barrier is clearly observed in the electron density and in the ion temperature and rotation profiles at ρ∼0.5 but not in the electron temperature profile, which is very broad. The misalignment of Ti and Te gradients may help to avoid a large local pressure gradient. Furtherm...


Physics of Plasmas | 2001

Progress toward long-pulse high-performance Advanced Tokamak discharges on the DIII-D tokamak

M. R. Wade; T.C. Luce; P.A. Politzer; J.R. Ferron; S.L. Allen; M. E. Austin; D.R. Baker; B.D. Bray; D. P. Brennen; K.H. Burrell; T. A. Casper; M. S. Chu; J.C. DeBoo; E. J. Doyle; A. M. Garofalo; P. Gohil; I.A. Gorelov; C. M. Greenfield; R. J. Groebner; W. W. Heidbrink; C.-L. Hsieh; A.W. Hyatt; R. Jayakumar; J. E. Kinsey; R.J. La Haye; L. L. Lao; C.J. Lasnier; E. A. Lazarus; A.W. Leonard; Y. R. Lin-Liu

Significant progress has been made in obtaining high-performance discharges for many energy confinement times in the DIII-D tokamak [J. L. Luxon et al., Plasma Physics and Controlled Fusion Research (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159]. Normalized performance (measured by the product of βNH89 and indicative of the proximity to both conventional β limits and energy confinement quality, respectively) ∼10 has been sustained for >5 τE with qmin>1.5. These edge localized modes (ELMing) H-mode discharges have β∼5%, which is limited by the onset of resistive wall modes slightly above the ideal no-wall n=1 limit, with approximately 75% of the current driven noninductively. The remaining Ohmic current is localized near the half-radius. The DIII-D electron cyclotron heating system is being upgraded to replace this inductively driven current with localized electron cyclotron current drive (ECCD). Density control, which is required for effective ECCD, has been successfully demonstrated ...

Collaboration


Dive into the P.A. Politzer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. J. Doyle

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C.T. Holcomb

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge