P. A. Price
Princeton University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by P. A. Price.
The Astrophysical Journal | 2012
John L. Tonry; Christopher W. Stubbs; Keith R. Lykke; Peter Doherty; I. S. Shivvers; W. S. Burgett; Ken Chambers; Klaus-Werner Hodapp; Nick Kaiser; R. P. Kudritzki; E. A. Magnier; Jeffrey S. Morgan; P. A. Price; R. J. Wainscoat
The Pan-STARRS1 survey is collecting multi-epoch, multi-color observations of the sky north of declination –30° to unprecedented depths. These data are being photometrically and astrometrically calibrated and will serve as a reference for many other purposes. In this paper, we present our determination of the Pan-STARRS1 photometric system: g P1, r P1, i P1, z P1, y P1, and w P1. The Pan-STARRS1 photometric system is fundamentally based on the Hubble Space Telescope Calspec spectrophotometric observations, which in turn are fundamentally based on models of white dwarf atmospheres. We define the Pan-STARRS1 magnitude system and describe in detail our measurement of the system passbands, including both the instrumental sensitivity and atmospheric transmission functions. By-products, including transformations to other photometric systems, Galactic extinction, and stellar locus, are also provided. We close with a discussion of remaining systematic errors.
Nature | 2012
S. Gezari; Ryan Chornock; Armin Rest; M. Huber; Karl Forster; Edo Berger; Peter J. Challis; James D. Neill; D. C. Martin; Timothy M. Heckman; A. Lawrence; Colin Norman; Gautham S. Narayan; Ryan J. Foley; G. H. Marion; D. Scolnic; Laura Chomiuk; Alicia M. Soderberg; K. W. Smith; Robert P. Kirshner; Adam G. Riess; S. J. Smartt; Christopher W. Stubbs; John L. Tonry; William Michael Wood-Vasey; W. S. Burgett; K. C. Chambers; T. Grav; J. N. Heasley; N. Kaiser
The flare of radiation from the tidal disruption and accretion of a star can be used as a marker for supermassive black holes that otherwise lie dormant and undetected in the centres of distant galaxies. Previous candidate flares have had declining light curves in good agreement with expectations, but with poor constraints on the time of disruption and the type of star disrupted, because the rising emission was not observed. Recently, two ‘relativistic’ candidate tidal disruption events were discovered, each of whose extreme X-ray luminosity and synchrotron radio emission were interpreted as the onset of emission from a relativistic jet. Here we report a luminous ultraviolet–optical flare from the nuclear region of an inactive galaxy at a redshift of 0.1696. The observed continuum is cooler than expected for a simple accreting debris disk, but the well-sampled rise and decay of the light curve follow the predicted mass accretion rate and can be modelled to determine the time of disruption to an accuracy of two days. The black hole has a mass of about two million solar masses, modulo a factor dependent on the mass and radius of the star disrupted. On the basis of the spectroscopic signature of ionized helium from the unbound debris, we determine that the disrupted star was a helium-rich stellar core.
The Astrophysical Journal | 2012
Edward F. Schlafly; Douglas P. Finkbeiner; Mario Juric; E. A. Magnier; W. S. Burgett; Ken Chambers; T. Grav; Klaus-Werner Hodapp; Nick Kaiser; R. P. Kudritzki; Nicolas F. Martin; Jeffrey S. Morgan; P. A. Price; H.-W. Rix; Christopher W. Stubbs; John L. Tonry; R. J. Wainscoat
We present a precise photometric calibration of the first 1.5 years of science imaging from the PanSTARRS1 survey (PS1), an ongoing optical survey of the entire sky north of declination −30 ◦ in five bands. Building on the techniques employed by Padmanabhan et al. (2008) in the Sloan Digital Sky Survey (SDSS), we use repeat PS1 observations of stars to perform the relative calibration of PS1 in each of its five bands, solving simultaneously for the system throughput, the atmospheric transparency, and the large-scale detector flat field. Both internal consistency tests and comparison against the SDSS indicate that we achieve relative precision of < 10 mmag in g, r, and iP1, and ∼ 10 mmag in z and yP1. The spatial structure of the differences with the SDSS indicates that errors in both the PS1 and SDSS photometric calibration contribute similarly to the differences. The analysis suggests that both the PS1 system and the Haleakala site will enable < 1% photometry over much of the sky. Subject headings: Surveys: Pan-STARRS1
The Astrophysical Journal | 2014
Armin Rest; D. Scolnic; Ryan J. Foley; M. Huber; Ryan Chornock; Gautham S. Narayan; John L. Tonry; Edo Berger; Alicia M. Soderberg; Christopher W. Stubbs; Adam G. Riess; Robert P. Kirshner; S. J. Smartt; Edward F. Schlafly; Steven A. Rodney; M. T. Botticella; D. Brout; Peter M. Challis; Ian Czekala; Maria Rebecca Drout; Michael J. Hudson; R. Kotak; C. Leibler; R. Lunnan; G. H. Marion; M. McCrum; D. Milisavljevic; Andrea Pastorello; Nathan Edward Sanders; K. W. Smith
We present griz P1 light curves of 146 spectroscopically confirmed Type Ia supernovae (SNe Ia; 0.03 < z < 0.65) discovered during the first 1.5 yr of the Pan-STARRS1 Medium Deep Survey. The Pan-STARRS1 natural photometric system is determined by a combination of on-site measurements of the instrument response function and observations of spectrophotometric standard stars. We find that the systematic uncertainties in the photometric system are currently 1.2% without accounting for the uncertainty in the Hubble Space Telescope Calspec definition of the AB system. A Hubble diagram is constructed with a subset of 113 out of 146 SNe Ia that pass our light curve quality cuts. The cosmological fit to 310 SNe Ia (113 PS1 SNe Ia + 222 light curves from 197 low-z SNe Ia), using only supernovae (SNe) and assuming a constant dark energy equation of state and flatness, yields . When combined with BAO+CMB(Planck)+H 0, the analysis yields and including all identified systematics. The value of w is inconsistent with the cosmological constant value of –1 at the 2.3σ level. Tension endures after removing either the baryon acoustic oscillation (BAO) or the H 0 constraint, though it is strongest when including the H 0 constraint. If we include WMAP9 cosmic microwave background (CMB) constraints instead of those from Planck, we find , which diminishes the discord to <2σ. We cannot conclude whether the tension with flat ΛCDM is a feature of dark energy, new physics, or a combination of chance and systematic errors. The full Pan-STARRS1 SN sample with ~three times as many SNe should provide more conclusive results.
Nature | 2013
M. Nicholl; S. J. Smartt; A. Jerkstrand; C. Inserra; M. McCrum; R. Kotak; M. Fraser; D. Wright; Ting-Wan Chen; K. W. Smith; D. R. Young; S. A. Sim; S. Valenti; D. A. Howell; Fabio Bresolin; R.-P. Kudritzki; John L. Tonry; M. Huber; Armin Rest; Andrea Pastorello; L. Tomasella; Enrico Cappellaro; Stefano Benetti; Seppo Mattila; E. Kankare; T. Kangas; G. Leloudas; Jesper Sollerman; F. Taddia; Edo Berger
Super-luminous supernovae that radiate more than 1044 ergs per second at their peak luminosity have recently been discovered in faint galaxies at redshifts of 0.1–4. Some evolve slowly, resembling models of ‘pair-instability’ supernovae. Such models involve stars with original masses 140–260 times that of the Sun that now have carbon–oxygen cores of 65–130 solar masses. In these stars, the photons that prevent gravitational collapse are converted to electron–positron pairs, causing rapid contraction and thermonuclear explosions. Many solar masses of 56Ni are synthesized; this isotope decays to 56Fe via 56Co, powering bright light curves. Such massive progenitors are expected to have formed from metal-poor gas in the early Universe. Recently, supernova 2007bi in a galaxy at redshift 0.127 (about 12 billion years after the Big Bang) with a metallicity one-third that of the Sun was observed to look like a fading pair-instability supernova. Here we report observations of two slow-to-fade super-luminous supernovae that show relatively fast rise times and blue colours, which are incompatible with pair-instability models. Their late-time light-curve and spectral similarities to supernova 2007bi call the nature of that event into question. Our early spectra closely resemble typical fast-declining super-luminous supernovae, which are not powered by radioactivity. Modelling our observations with 10–16 solar masses of magnetar-energized ejecta demonstrates the possibility of a common explosion mechanism. The lack of unambiguous nearby pair-instability events suggests that their local rate of occurrence is less than 6 × 10−6 times that of the core-collapse rate.
The Astrophysical Journal | 2014
R. Lunnan; Ryan Chornock; Edo Berger; Tanmoy Laskar; William. Fong; Armin Rest; Nathan Edward Sanders; Peter M. Challis; Maria Rebecca Drout; Ryan J. Foley; M. E. Huber; Robert P. Kirshner; C. Leibler; G. H. Marion; M. McCrum; D. Milisavljevic; Gautham S. Narayan; D. Scolnic; S. J. Smartt; K. W. Smith; Alicia M. Soderberg; John L. Tonry; W. S. Burgett; K. C. Chambers; H. Flewelling; Klaus-Werner Hodapp; Nick Kaiser; E. A. Magnier; P. A. Price; R. J. Wainscoat
We present optical spectroscopy and optical/near-IR photometry of 31 host galaxies of hydrogen-poor superluminous supernovae (SLSNe), including 15 events from the Pan-STARRS1 Medium Deep Survey. Our sample spans the redshift range 0.1 ~ -17.3 mag), low stellar mass ( ~ 2 x 10^8 M_sun) population, with a high median specific star formation rate ( ~ 2 Gyr^-1). The median metallicity of our spectroscopic sample is low, 12 + log(O/H}) ~ 8.35 ~ 0.45 Z_sun, although at least one host galaxy has solar metallicity. The host galaxies of H-poor SLSNe are statistically distinct from the hosts of GOODS core-collapse SNe (which cover a similar redshift range), but resemble the host galaxies of long-duration gamma-ray bursts (LGRBs) in terms of stellar mass, SFR, sSFR and metallicity. This result indicates that the environmental causes leading to massive stars forming either SLSNe or LGRBs are similar, and in particular that SLSNe are more effectively formed in low metallicity environments. We speculate that the key ingredient is large core angular momentum, leading to a rapidly-spinning magnetar in SLSNe and an accreting black hole in LGRBs.
The Astrophysical Journal | 2011
Laura Chomiuk; Ryan Chornock; Alicia M. Soderberg; Edo Berger; Roger A. Chevalier; Ryan J. Foley; M. E. Huber; Gautham S. Narayan; Armin Rest; S. Gezari; Robert P. Kirshner; Adam G. Riess; Steven A. Rodney; S. J. Smartt; Christopher W. Stubbs; John L. Tonry; William Michael Wood-Vasey; W. S. Burgett; K. C. Chambers; Ian Czekala; H. Flewelling; K. Forster; N. Kaiser; R.-P. Kudritzki; E. A. Magnier; D. C. Martin; Jeffrey S. Morgan; James D. Neill; P. A. Price; Kathy Roth
We present the discovery of two ultraluminous supernovae (SNe) at z ≈ 0.9 with the Pan-STARRS1 Medium Deep Survey. These SNe, PS1-10ky and PS1-10awh, are among the most luminous SNe ever discovered, comparable to the unusual transients SN 2005ap and SCP 06F6. Like SN 2005ap and SCP 06F6, they show characteristic high luminosities (M_(bol) ≈ –22.5 mag), blue spectra with a few broad absorption lines, and no evidence for H or He. We have constructed a full multi-color light curve sensitive to the peak of the spectral energy distribution in the rest-frame ultraviolet, and we have obtained time series spectroscopy for these SNe. Given the similarities between the SNe, we combine their light curves to estimate a total radiated energy over the course of explosion of (0.9-1.4) × 10^(51) erg. We find photospheric velocities of 12,000-19,000 km s^(–1) with no evidence for deceleration measured across ~3 rest-frame weeks around light curve peak, consistent with the expansion of an optically thick massive shell of material. We show that, consistent with findings for other ultraluminous SNe in this class, radioactive decay is not sufficient to power PS1-10ky, and we discuss two plausible origins for these events: the initial spin-down of a newborn magnetar in a core-collapse SN, or SN shock breakout from the dense circumstellar wind surrounding a Wolf-Rayet star.
The Astrophysical Journal | 2013
Ryan Chornock; Edo Berger; S. Gezari; B. A. Zauderer; Armin Rest; Laura Chomiuk; Atish Kamble; Alicia M. Soderberg; Ian Czekala; Jason A. Dittmann; Maria Rebecca Drout; Ryan J. Foley; William. Fong; M. Huber; Robert P. Kirshner; A. Lawrence; R. Lunnan; G. H. Marion; Gautham S. Narayan; Adam G. Riess; Kathy Roth; Nathan Edward Sanders; D. Scolnic; S. J. Smartt; K. W. Smith; Christopher W. Stubbs; John L. Tonry; W. S. Burgett; K. C. Chambers; H. Flewelling
We present the Pan-STARRS1 discovery of the long-lived and blue transient PS1-11af, which was also detected by Galaxy Evolution Explorer with coordinated observations in the near-ultraviolet (NUV) band. PS1-11af is associated with the nucleus of an early type galaxy at redshift z = 0.4046 that exhibits no evidence for star formation or active galactic nucleus activity. Four epochs of spectroscopy reveal a pair of transient broad absorption features in the UV on otherwise featureless spectra. Despite the superficial similarity of these features to P-Cygni absorptions of supernovae (SNe), we conclude that PS1-11af is not consistent with the properties of known types of SNe. Blackbody fits to the spectral energy distribution are inconsistent with the cooling, expanding ejecta of a SN, and the velocities of the absorption features are too high to represent material in homologous expansion near a SN photosphere. However, the constant blue colors and slow evolution of the luminosity are similar to previous optically selected tidal disruption events (TDEs). The shape of the optical light curve is consistent with models for TDEs, but the minimum accreted mass necessary to power the observed luminosity is only ~0.002 M ☉, which points to a partial disruption model. A full disruption model predicts higher bolometric luminosities, which would require most of the radiation to be emitted in a separate component at high energies where we lack observations. In addition, the observed temperature is lower than that predicted by pure accretion disk models for TDEs and requires reprocessing to a constant, lower temperature. Three deep non-detections in the radio with the Very Large Array over the first two years after the event set strict limits on the production of any relativistic outflow comparable to Swift J1644+57, even if off-axis.
The Astrophysical Journal | 2014
Edward F. Schlafly; Gregory M. Green; Douglas P. Finkbeiner; H.-W. Rix; Eric F. Bell; W. S. Burgett; K. C. Chambers; Peter W. Draper; Klaus-Werner Hodapp; Nick Kaiser; E. A. Magnier; Nicolas F. Martin; N. Metcalfe; P. A. Price; John L. Tonry
Distance measurements to molecular clouds are important but are often made separately for each cloud of interest, employing very different data and techniques. We present a large, homogeneous catalog of distances to molecular clouds, most of which are of unprecedented accuracy. We determine distances using optical photometry of stars along lines of sight toward these clouds, obtained from PanSTARRS-1. We simultaneously infer the reddenings and distances to these stars, tracking the full probability distribution function using a technique presented in Green et al. We fit these star-by-star measurements using a simple dust screen model to find the distance to each cloud. We thus estimate the distances to almost all of the clouds in the Magnani et al. catalog, as well as many other well-studied clouds, including Orion, Perseus, Taurus, Cepheus, Polaris, California, and Monoceros R2, avoiding only the inner Galaxy. Typical statistical uncertainties in the distances are 5%, though the systematic uncertainty stemming from the quality of our stellar models is about 10%. The resulting catalog is the largest catalog of accurate, directly measured distances to molecular clouds. Our distance estimates are generally consistent with available distance estimates from the literature, though in some cases the literature estimates are off by a factor of more than two.
The Astrophysical Journal | 2014
Maria Rebecca Drout; Ryan Chornock; Alicia M. Soderberg; Nathan Edward Sanders; R. McKinnon; Armin Rest; Ryan J. Foley; D. Milisavljevic; Raffaella Margutti; Edo Berger; Michael L. Calkins; William. Fong; S. Gezari; M. Huber; E. Kankare; Robert P. Kirshner; C. Leibler; R. Lunnan; Seppo Mattila; G. H. Marion; Gautham S. Narayan; A. G. Riess; Kathy Roth; D. Scolnic; S. J. Smartt; John L. Tonry; W. S. Burgett; K. C. Chambers; K. W. Hodapp; Robert Jedicke
In the past decade, several rapidly evolving transients have been discovered whose timescales and luminosities are not easily explained by traditional supernovae (SNe) models. The sample size of these objects has remained small due, at least in part, to the challenges of detecting short timescale transients with traditional survey cadences. Here we present the results from a search within the Pan-STARRS1 Medium Deep Survey (PS1-MDS) for rapidly evolving and luminous transients. We identify 10 new transients with a time above half-maximum (t 1/2) of less than 12 days and –16.5 > M > –20 mag. This increases the number of known events in this region of SN phase space by roughly a factor of three. The median redshift of the PS1-MDS sample is z = 0.275 and they all exploded in star-forming galaxies. In general, the transients possess faster rise than decline timescale and blue colors at maximum light (g P1 – r P1 lsim –0.2). Best-fit blackbodies reveal photospheric temperatures/radii that expand/cool with time and explosion spectra taken near maximum light are dominated by a blue continuum, consistent with a hot, optically thick, ejecta. We find it difficult to reconcile the short timescale, high peak luminosity (L > 1043 erg s–1), and lack of UV line blanketing observed in many of these transients with an explosion powered mainly by the radioactive decay of 56Ni. Rather, we find that many are consistent with either (1) cooling envelope emission from the explosion of a star with a low-mass extended envelope that ejected very little (<0.03 M ☉) radioactive material, or (2) a shock breakout within a dense, optically thick, wind surrounding the progenitor star. After calculating the detection efficiency for objects with rapid timescales in the PS1-MDS we find a volumetric rate of 4800-8000 events yr–1 Gpc–3 (4%-7% of the core-collapse SN rate at z = 0.2).