Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where P. Anthony Weil is active.

Publication


Featured researches published by P. Anthony Weil.


Molecular and Cellular Biology | 2002

Proteomics of the Eukaryotic Transcription Machinery: Identification of Proteins Associated with Components of Yeast TFIID by Multidimensional Mass Spectrometry

Steven L. Sanders; Jennifer L. Jennings; Adrian Canutescu; Andrew J. Link; P. Anthony Weil

ABSTRACT The general transcription factor TFIID is a multisubunit complex of TATA-binding protein (TBP) and 14 distinct TBP-associated factors (TAFs). Although TFIID constituents are required for transcription initiation of most mRNA encoding genes, the mechanism of TFIID action remains unclear. To gain insight into TFIID function, we sought to generate a proteomic catalogue of proteins specifically interacting with TFIID subunits. Toward this end, TFIID was systematically immunopurified by using polyclonal antibodies directed against each subunit, and the constellation of TBP- and TAF-associated proteins was directly identified by coupled multidimensional liquid chromatography and tandem mass spectrometry. A number of novel protein-protein associations were observed, and several were characterized in detail. These interactions include association between TBP and the RSC chromatin remodeling complex, the TAF17p-dependent association of the Swi6p transactivator protein with TFIID, and the identification of three novel subunits of the SAGA acetyltransferase complex, including a putative ubiquitin-specific protease component. Our results provide important new insights into the mechanisms of mRNA gene transcription and demonstrate the feasibility of constructing a complete proteomic interaction map of the eukaryotic transcription apparatus.


Molecular and Cellular Biology | 2004

Cluster Analysis of Mass Spectrometry Data Reveals a Novel Component of SAGA

David W. Powell; Connie M. Weaver; Jennifer L. Jennings; K. Jill McAfee; Yue He; P. Anthony Weil; Andrew J. Link

ABSTRACT The SAGA histone acetyltransferase and TFIID complexes play key roles in eukaryotic transcription. Using hierarchical cluster analysis of mass spectrometry data to identify proteins that copurify with components of the budding yeast TFIID transcription complex, we discovered that an uncharacterized protein corresponding to the YPL047W open reading frame significantly associated with shared components of the TFIID and SAGA complexes. Using mass spectrometry and biochemical assays, we show that YPL047W (SGF11, 11-kDa SAGA-associated factor) is an integral subunit of SAGA. However, SGF11 does not appear to play a role in SAGA-mediated histone acetylation. DNA microarray analysis showed that SGF11 mediates transcription of a subset of SAGA-dependent genes, as well as SAGA-independent genes. SAGA purified from a sgf11Δ deletion strain has reduced amounts of Ubp8p, and a ubp8Δ deletion strain shows changes in transcription similar to those seen with the sgf11Δ deletion strain. Together, these data show that Sgf11p is a novel component of the yeast SAGA complex and that SGF11 regulates transcription of a subset of SAGA-regulated genes. Our data suggest that the role of SGF11 in transcription is independent of SAGAs histone acetyltransferase activity but may involve Ubp8p recruitment to or stabilization in SAGA.


Molecular and Cellular Biology | 1998

The Gcn4p Activation Domain Interacts Specifically In Vitro with RNA Polymerase II Holoenzyme, TFIID, and the Adap-Gcn5p Coactivator Complex

Connie Marie Drysdale; Belinda M. Jackson; Richard McVeigh; Edward R. Klebanow; Yu Bai; Tetsuro Kokubo; Mark J. Swanson; Yoshihiro Nakatani; P. Anthony Weil; Alan G. Hinnebusch

ABSTRACT The Gcn4p activation domain contains seven clusters of hydrophobic residues that make additive contributions to transcriptional activation in vivo. We observed efficient binding of a glutathioneS-transferase (GST)–Gcn4p fusion protein to components of three different coactivator complexes in Saccharomyces cerevisiae cell extracts, including subunits of transcription factor IID (TFIID) (yeast TAFII20 [yTAFII20], yTAFII60, and yTAFII90), the holoenzyme mediator (Srb2p, Srb4p, and Srb7p), and the Adap-Gcn5p complex (Ada2p and Ada3p). The binding to these coactivator subunits was completely dependent on the hydrophobic clusters in the Gcn4p activation domain. Alanine substitutions in single clusters led to moderate reductions in binding, double-cluster substitutions generally led to greater reductions in binding than the corresponding single-cluster mutations, and mutations in four or more clusters reduced binding to all of the coactivator proteins to background levels. The additive effects of these mutations on binding of coactivator proteins correlated with their cumulative effects on transcriptional activation by Gcn4p in vivo, particularly with Ada3p, suggesting that recruitment of these coactivator complexes to the promoter is a cardinal function of the Gcn4p activation domain. As judged by immunoprecipitation analysis, components of the mediator were not associated with constituents of TFIID and Adap-Gcn5p in the extracts, implying that GST-Gcn4p interacted with the mediator independently of these other coactivators. Unexpectedly, a proportion of Ada2p coimmunoprecipitated with yTAFII90, and the yTAFII20, -60, and -90 proteins were coimmunoprecipitated with Ada3p, revealing a stable interaction between components of TFIID and the Adap-Gcn5p complex. Because GST-Gcn4p did not bind specifically to highly purified TFIID, Gcn4p may interact with TFIID via the Adap-Gcn5p complex or some other adapter proteins. The ability of Gcn4p to interact with several distinct coactivator complexes that are physically and genetically linked to TATA box-binding protein can provide an explanation for the observation that yTAFII proteins are dispensable for activation by Gcn4p in vivo.


Molecular and Cellular Biology | 2002

Molecular Characterization of Saccharomyces cerevisiae TFIID

Steven L. Sanders; Krassimira A. Garbett; P. Anthony Weil

ABSTRACT We previously defined Saccharomyces cerevisiae TFIID as a 15-subunit complex comprised of the TATA binding protein (TBP) and 14 distinct TBP-associated factors (TAFs). In this report we give a detailed biochemical characterization of this general transcription factor. We have shown that yeast TFIID efficiently mediates both basal and activator-dependent transcription in vitro and displays TATA box binding activity that is functionally distinct from that of TBP. Analyses of the stoichiometry of TFIID subunits indicated that several TAFs are present at more than 1 copy per TFIID complex. This conclusion was further supported by coimmunoprecipitation experiments with a systematic family of (pseudo)diploid yeast strains that expressed epitope-tagged and untagged alleles of the genes encoding TFIID subunits. Based on these data, we calculated a native molecular mass for monomeric TFIID. Purified TFIID behaved in a fashion consistent with this calculated molecular mass in both gel filtration and rate-zonal sedimentation experiments. Quite surprisingly, although the TAF subunits of TFIID cofractionated as a single complex, TBP did not comigrate with the TAFs during either gel filtration chromatography or rate-zonal sedimentation, suggesting that TBP has the ability to dynamically associate with the TFIID TAFs. The results of direct biochemical exchange experiments confirmed this hypothesis. Together, our results represent a concise molecular characterization of the general transcription factor TFIID from S. cerevisiae.


The EMBO Journal | 2002

Mapping histone fold TAFs within yeast TFIID

Claire Leurent; Steven L. Sanders; Christine Ruhlmann; Véronique Mallouh; P. Anthony Weil; Doris B. Kirschner; Laszlo Tora; Patrick Schultz

The transcription factor TFIID is a large multiprotein complex, composed of the TATA box‐binding protein (TBP) and 14 TBP‐associated factors (TAFs), which plays a key role in the regulation of gene expression by RNA polymerase II. The three‐dimensional structure of yeast (y) TFIID, determined at ∼3 nm resolution by electron microscopy and image analysis, resembles a molecular clamp formed by three major lobes connected by thin linking domains. The yTFIID is structurally similar to the human factor although the clamp appears more closed in the yeast complex, probably reflecting the conformational flexibility of the structure. Immunolabelling experiments showed that nine TAFs that contain the histone fold structural motif were located in three distinct substructures of TFIID. The distribution of these TAFs showed that the previously reported pair‐wise interactions between histone fold domain (HFD)‐containing TAFs are likely to occur in the native yTFIID complex. Most of the HFD‐containing TAFs have been found in two distinct lobes, thus revealing an unexpected and novel molecular organization of TFIID.


Cell | 1990

Analysis of structure-function relationships of yeast TATA box binding factor TFIID

Masami Horikoshi; Tohru Yamamoto; Yoshiaki Ohkuma; P. Anthony Weil; Robert G. Roeder

A systematic series of N-terminal, C-terminal, and internal deletion mutants of S. cerevisiae TFIID were expressed in vitro and tested for TATA box binding and basal level transcription activities using, respectively, DNA mobility shift and in vitro transcription assays. The domains responsible for these activities were colocalized to a surprisingly large region containing C-terminal residues 63-240. This region was noted previously to contain potentially interesting structural motifs (central basic core, direct repeats, and sigma factor homology) and, more recently, to be highly conserved among TFIID from different species. Deletion mutant cotranslation studies revealed that TFIID binds DNA as a monomer. The implications of these results for TFIID structure and function are discussed.


The EMBO Journal | 2004

Mapping key functional sites within yeast TFIID

Claire Leurent; Steven L. Sanders; Màté A. Demény; Krassimira A. Garbett; Christine Ruhlmann; P. Anthony Weil; Laszlo Tora; Patrick Schultz

The transcription factor TFIID, composed of the TATA box‐binding protein (TBP) and 14 TBP‐associated factors (TAFs), plays a key role in the regulation of gene expression by RNA polymerase II. The structure of yeast TFIID, as determined by electron microscopy and digital image analysis, is formed by three lobes, labelled A–C, connected by thin linking domains. Immunomapping revealed that TFIID contains two copies of the WD‐40 repeat‐containing TAF5 and that TAF5 contributes to the linkers since its C‐ and N‐termini were found in different lobes. This property was confirmed by the finding that a recombinant complex containing TAF5 complexed with six histone fold containing TAFs was able to form a trilobed structure. Moreover, the N‐terminal domain of TAF1 was mapped in lobe C, whereas the histone acetyltransferase domain resides in lobe A along with TAF7. TBP was found in the linker domain between lobes A and C in a way that the N‐terminal 100 residues of TAF1 are spanned over it. The implications of these data with regard to TFIID function are discussed.


Journal of Biological Chemistry | 1999

TAF25p, a non-histone-like subunit of TFIID and SAGA complexes, is essential for total mRNA gene transcription in vivo.

Steven L. Sanders; Edward R. Klebanow; P. Anthony Weil

We demonstrate, utilizing a temperature conditional mutant allele of the gene encoding TAF25p, that this non-histone-like TBP-associated factor, which is shared between the TFIID and SAGA complexes, is required for bulk mRNA gene transcription by RNA polymerase II in vivo. Immunoblotting experiments indicate that at the restrictive temperature, inactivation of TAF25p function results in a reduction of the levels of numerous TFIID and SAGA subunits, indicating its loss of function, like the histone-like TAFs, causes degradation of the constituents of these two multisubunit complexes. These data suggest that TAF25p plays a key structural role in maintaining TFIID and SAGA complex integrity. This is the first demonstration that a non-histone-like TAF is required for continuous, high level RNA polymerase II-mediated mRNA gene transcription in living yeast cells.


Molecular and Cellular Biology | 2007

Yeast TFIID Serves as a Coactivator for Rap1p by Direct Protein-Protein Interaction

Krassimira A. Garbett; Manish K. Tripathi; Belgin Cencki; Justin H. Layer; P. Anthony Weil

ABSTRACT In vivo studies have previously shown that Saccharomyces cerevisiae ribosomal protein (RP) gene expression is controlled by the transcription factor repressor activator protein 1 (Rap1p) in a TFIID-dependent fashion. Here we have tested the hypothesis that yeast TFIID serves as a coactivator for RP gene transcription by directly interacting with Rap1p. We have found that purified recombinant Rap1p specifically interacts with purified TFIID in pull-down assays, and we have mapped the domains of Rap1p and subunits of TFIID responsible. In vitro transcription of a UASRAP1 enhancer-driven reporter gene requires both Rap1p and TFIID and is independent of the Fhl1p-Ifh1p coregulator. UASRAP1 enhancer-driven transactivation in extracts depleted of both Rap1p and TFIID is efficiently rescued by addition of physiological amounts of these two purified factors but not TATA-binding protein. We conclude that Rap1p and TFIID directly interact and that this interaction contributes importantly to RP gene transcription.


Current Opinion in Genetics & Development | 2011

New insights into the function of transcription factor TFIID from recent structural studies.

Gabor Papai; P. Anthony Weil; Patrick Schultz

The general transcription factor IID is a key player in the early events of gene expression. TFIID is a multisubunit complex composed of the TATA binding protein and at least 13 TBP associated factors (TAfs) which recognize the promoter of protein coding genes in an activator dependant way. This review highlights recent findings on the molecular architecture and dynamics of TFIID. The structural analysis of functional transcription complexes formed by TFIID, TFIIA, activators and/or promoter DNA illuminates the faculty of TFIID to adjust to various promoter architectures and highlights its role as a platform for preinitiation complex assembly.

Collaboration


Dive into the P. Anthony Weil's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Manish K. Tripathi

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gabor Papai

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar

Laszlo Tora

University of Strasbourg

View shared research outputs
Researchain Logo
Decentralizing Knowledge