Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven L. Sanders is active.

Publication


Featured researches published by Steven L. Sanders.


Molecular and Cellular Biology | 2002

Proteomics of the Eukaryotic Transcription Machinery: Identification of Proteins Associated with Components of Yeast TFIID by Multidimensional Mass Spectrometry

Steven L. Sanders; Jennifer L. Jennings; Adrian Canutescu; Andrew J. Link; P. Anthony Weil

ABSTRACT The general transcription factor TFIID is a multisubunit complex of TATA-binding protein (TBP) and 14 distinct TBP-associated factors (TAFs). Although TFIID constituents are required for transcription initiation of most mRNA encoding genes, the mechanism of TFIID action remains unclear. To gain insight into TFIID function, we sought to generate a proteomic catalogue of proteins specifically interacting with TFIID subunits. Toward this end, TFIID was systematically immunopurified by using polyclonal antibodies directed against each subunit, and the constellation of TBP- and TAF-associated proteins was directly identified by coupled multidimensional liquid chromatography and tandem mass spectrometry. A number of novel protein-protein associations were observed, and several were characterized in detail. These interactions include association between TBP and the RSC chromatin remodeling complex, the TAF17p-dependent association of the Swi6p transactivator protein with TFIID, and the identification of three novel subunits of the SAGA acetyltransferase complex, including a putative ubiquitin-specific protease component. Our results provide important new insights into the mechanisms of mRNA gene transcription and demonstrate the feasibility of constructing a complete proteomic interaction map of the eukaryotic transcription apparatus.


Molecular and Cellular Biology | 2002

Molecular Characterization of Saccharomyces cerevisiae TFIID

Steven L. Sanders; Krassimira A. Garbett; P. Anthony Weil

ABSTRACT We previously defined Saccharomyces cerevisiae TFIID as a 15-subunit complex comprised of the TATA binding protein (TBP) and 14 distinct TBP-associated factors (TAFs). In this report we give a detailed biochemical characterization of this general transcription factor. We have shown that yeast TFIID efficiently mediates both basal and activator-dependent transcription in vitro and displays TATA box binding activity that is functionally distinct from that of TBP. Analyses of the stoichiometry of TFIID subunits indicated that several TAFs are present at more than 1 copy per TFIID complex. This conclusion was further supported by coimmunoprecipitation experiments with a systematic family of (pseudo)diploid yeast strains that expressed epitope-tagged and untagged alleles of the genes encoding TFIID subunits. Based on these data, we calculated a native molecular mass for monomeric TFIID. Purified TFIID behaved in a fashion consistent with this calculated molecular mass in both gel filtration and rate-zonal sedimentation experiments. Quite surprisingly, although the TAF subunits of TFIID cofractionated as a single complex, TBP did not comigrate with the TAFs during either gel filtration chromatography or rate-zonal sedimentation, suggesting that TBP has the ability to dynamically associate with the TFIID TAFs. The results of direct biochemical exchange experiments confirmed this hypothesis. Together, our results represent a concise molecular characterization of the general transcription factor TFIID from S. cerevisiae.


The EMBO Journal | 2002

Mapping histone fold TAFs within yeast TFIID

Claire Leurent; Steven L. Sanders; Christine Ruhlmann; Véronique Mallouh; P. Anthony Weil; Doris B. Kirschner; Laszlo Tora; Patrick Schultz

The transcription factor TFIID is a large multiprotein complex, composed of the TATA box‐binding protein (TBP) and 14 TBP‐associated factors (TAFs), which plays a key role in the regulation of gene expression by RNA polymerase II. The three‐dimensional structure of yeast (y) TFIID, determined at ∼3 nm resolution by electron microscopy and image analysis, resembles a molecular clamp formed by three major lobes connected by thin linking domains. The yTFIID is structurally similar to the human factor although the clamp appears more closed in the yeast complex, probably reflecting the conformational flexibility of the structure. Immunolabelling experiments showed that nine TAFs that contain the histone fold structural motif were located in three distinct substructures of TFIID. The distribution of these TAFs showed that the previously reported pair‐wise interactions between histone fold domain (HFD)‐containing TAFs are likely to occur in the native yTFIID complex. Most of the HFD‐containing TAFs have been found in two distinct lobes, thus revealing an unexpected and novel molecular organization of TFIID.


The EMBO Journal | 2004

Mapping key functional sites within yeast TFIID

Claire Leurent; Steven L. Sanders; Màté A. Demény; Krassimira A. Garbett; Christine Ruhlmann; P. Anthony Weil; Laszlo Tora; Patrick Schultz

The transcription factor TFIID, composed of the TATA box‐binding protein (TBP) and 14 TBP‐associated factors (TAFs), plays a key role in the regulation of gene expression by RNA polymerase II. The structure of yeast TFIID, as determined by electron microscopy and digital image analysis, is formed by three lobes, labelled A–C, connected by thin linking domains. Immunomapping revealed that TFIID contains two copies of the WD‐40 repeat‐containing TAF5 and that TAF5 contributes to the linkers since its C‐ and N‐termini were found in different lobes. This property was confirmed by the finding that a recombinant complex containing TAF5 complexed with six histone fold containing TAFs was able to form a trilobed structure. Moreover, the N‐terminal domain of TAF1 was mapped in lobe C, whereas the histone acetyltransferase domain resides in lobe A along with TAF7. TBP was found in the linker domain between lobes A and C in a way that the N‐terminal 100 residues of TAF1 are spanned over it. The implications of these data with regard to TFIID function are discussed.


Journal of Biological Chemistry | 1999

TAF25p, a non-histone-like subunit of TFIID and SAGA complexes, is essential for total mRNA gene transcription in vivo.

Steven L. Sanders; Edward R. Klebanow; P. Anthony Weil

We demonstrate, utilizing a temperature conditional mutant allele of the gene encoding TAF25p, that this non-histone-like TBP-associated factor, which is shared between the TFIID and SAGA complexes, is required for bulk mRNA gene transcription by RNA polymerase II in vivo. Immunoblotting experiments indicate that at the restrictive temperature, inactivation of TAF25p function results in a reduction of the levels of numerous TFIID and SAGA subunits, indicating its loss of function, like the histone-like TAFs, causes degradation of the constituents of these two multisubunit complexes. These data suggest that TAF25p plays a key structural role in maintaining TFIID and SAGA complex integrity. This is the first demonstration that a non-histone-like TAF is required for continuous, high level RNA polymerase II-mediated mRNA gene transcription in living yeast cells.


Journal of Biological Chemistry | 2008

Di-methyl H4 lysine 20 targets the checkpoint protein Crb2 to sites of DNA damage.

Nikole T. Greeson; Roopsha Sengupta; Ahmad R. Arida; Thomas Jenuwein; Steven L. Sanders

Histone lysine methylation is an important chromatin modification that can be catalyzed to a mono-, di-, or tri-methyl state. An ongoing challenge is to decipher how these different methyllysine histone marks can mediate distinct aspects of chromatin function. The fission yeast checkpoint protein Crb2 is rapidly targeted to sites of DNA damage after genomic insult, and this recruitment requires methylation of histone H4 lysine 20 (H4K20). Here we show that the tandem tudor domains of Crb2 preferentially bind the di-methylated H4K20 residue. Loss of this interaction by disrupting either the tudor-binding motif or the H4K20 methylating enzyme Set9/Kmt5 ablates Crb2 localization to double-strand breaks and impairs checkpoint function. Further we show that dimethylation, but not tri-methylation, of H4K20 is required for Crb2 localization, checkpoint function, and cell survival after DNA damage. These results argue that the di-methyl H4K20 modification serves as a binding target that directs Crb2 to sites of genomic lesions and defines an important genome integrity pathway mediated by a specific methyl-lysine histone mark.


Molecular and Cellular Biology | 2002

Distinct Mutations in Yeast TAFII25 Differentially Affect the Composition of TFIID and SAGA Complexes as Well as Global Gene Expression Patterns

Doris B. Kirschner; Elmar Vom Baur; Christelle Thibault; Steven L. Sanders; Yann Gaël Gangloff; Irwin Davidson; P. Anthony Weil; Laszlo Tora

ABSTRACT The RNA polymerase II transcription factor TFIID, composed of the TATA-binding protein (TBP) and TBP-associated factors (TAFIIs), nucleates preinitiation complex formation at protein-coding gene promoters. SAGA, a second TAFII-containing multiprotein complex, is involved in transcription regulation in Saccharomyces cerevisiae. One of the essential protein components common to SAGA and TFIID is yTAFII25. We define a minimal evolutionarily conserved 91-amino-acid region of TAFII25 containing a histone fold domain that is necessary and sufficient for growth in vivo. Different temperature-sensitive mutations of yTAFII25 or chimeras with the human homologue TAFII30 arrested cell growth at either the G1 or G2/M cell cycle phase and displayed distinct phenotypic changes and gene expression patterns. Immunoprecipitation studies revealed that TAFII25 mutation-dependent gene expression and phenotypic changes correlated at least partially with the integrity of SAGA and TFIID. Genome-wide expression analysis revealed that the five TAFII25 temperature-sensitive mutant alleles individually affect the expression of between 18 and 33% of genes, whereas taken together they affect 64% of all class II genes. Thus, different yTAFII25 mutations induce distinct phenotypes and affect the regulation of different subsets of genes, demonstrating that no individual TAFII mutant allele reflects the full range of its normal functions.


Journal of Biological Chemistry | 2003

Use of a genetically introduced cross-linker to identify interaction sites of acidic activators within native transcription factor IID and SAGA.

Joachim Klein; Mark Nolden; Steven L. Sanders; Jay Kirchner; P. Anthony Weil; Karsten Melcher

An important goal is to identify the direct activation domain (AD)-interacting components of the transcriptional machinery within the context of native complexes. Toward this end, we first demonstrate that the multisubunit TFIID, SAGA, mediator, and Swi/Snf coactivator complexes from transcriptionally competent whole-cell yeast extracts were all capable of specifically interacting with the prototypic acidic ADs of Gal4 and VP16. We then used hexahistidine tags as genetically introduced activation domain-localized cross-linking receptors. In combination with immunological reagents against all subunits of TFIID and SAGA, we systematically identified the direct AD-interacting subunits within the AD-TFIID and AD-SAGA coactivator complexes enriched from whole-cell extracts and confirmed these results using purified TFIID and partially purified SAGA. Both ADs directly cross-linked to TBP and to a subset of TFIID and SAGA subunits that carry histone-fold motifs.


Molecular and Cellular Biology | 2001

Molecular Genetic Dissection of TAF25, an Essential Yeast Gene Encoding a Subunit Shared by TFIID and SAGA Multiprotein Transcription Factors

J. Kirchner; Steven L. Sanders; Edward R. Klebanow; P A Weil

ABSTRACT We have performed a systematic structure-function analysis of Saccharomyces cerevisiae TAF25, an evolutionarily conserved, single-copy essential gene which encodes the 206-amino-acid TAF25p protein. TAF25p is an integral subunit of both the 15-subunit general transcription factor TFIID and the multisubunit, chromatin-acetylating transcriptional coactivator SAGA. We used hydroxylamine mutagenesis, targeted deletion, alanine-scanning mutagenesis, high-copy suppression methods, and two-hybrid screening to dissect TAF25. Temperature-sensitive mutant strains generated were used for coimmunoprecipitation and transcription analyses to define the in vivo functions of TAF25p. The results of these analyses show that TAF25p is comprised of multiple mutable elements which contribute importantly to RNA polymerase II-mediated mRNA gene transcription.


Molecular and Cellular Biology | 2010

Requirement for the Phospho-H2AX Binding Module of Crb2 in Double-Strand Break Targeting and Checkpoint Activation

Steven L. Sanders; Ahmad R. Arida; Funita P. Phan

ABSTRACT Activation of DNA damage checkpoints requires the rapid accumulation of numerous factors to sites of genomic lesions, and deciphering the mechanisms of this targeting is central to our understanding of DNA damage response. Histone modification has recently emerged as a critical element for the correct localization of damage response proteins, and one key player in this context is the fission yeast checkpoint mediator Crb2. Accumulation of Crb2 at ionizing irradiation-induced double-strand breaks (DSBs) requires two distinct histone marks, dimethylated H4 lysine 20 (H4K20me2) and phosphorylated H2AX (pH2AX). A tandem tudor motif in Crb2 directly binds H4K20me2, and this interaction is required for DSB targeting and checkpoint activation. Similarly, pH2AX is required for Crb2 localization to DSBs and checkpoint control. Crb2 can directly bind pH2AX through a pair of C-terminal BRCT repeats, but the functional significance of this binding has been unclear. Here we demonstrate that loss of its pH2AX-binding activity severely impairs the ability of Crb2 to accumulate at ionizing irradiation-induced DSBs, compromises checkpoint signaling, and disrupts checkpoint-mediated cell cycle arrest. These impairments are similar to that reported for abolition of pH2AX or mutation of the H4K20me2-binding tudor motif of Crb2. Intriguingly, a combined ablation of its two histone modification binding modules yields a strikingly additive reduction in Crb2 activity. These observations argue that binding of the Crb2 BRCT repeats to pH2AX is critical for checkpoint activity and provide new insight into the mechanisms of chromatin-mediated genome stability.

Collaboration


Dive into the Steven L. Sanders's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laszlo Tora

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar

Ahmad R. Arida

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge