Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where P. Caselli is active.

Publication


Featured researches published by P. Caselli.


The Astrophysical Journal | 2002

Systematic Molecular Differentiation in Starless Cores

M. Tafalla; P. C. Myers; P. Caselli; C. M. Walmsley; C. Comito

We present evidence that low-mass starless cores, the simplest units of star formation, are systematically differentiated in their chemical composition. Some molecules, including CO and CS, almost vanish near the core centers, where the abundance decreases by at least 1 or 2 orders of magnitude with respect to the value in the outer core. At the same time, the N2H+ molecule has a constant abundance, and the fraction of NH3 increases toward the core center. Our conclusions are based on a systematic study of five mostly round starless cores (L1498, L1495, L1400K, L1517B, and L1544), which we have mapped in C18O (1-0), CS (2-1), N2H+ (1-0), NH3 (1, 1) and (2, 2), and the 1.2 mm continuum [complemented with C17O (1-0) and C34S (2-1) data for some systems]. For each core we have built a spherically symmetric model in which the density is derived from the 1.2 mm continuum, the kinetic temperature is derived from NH3, and the abundance of each molecule is derived using a Monte Carlo radiative transfer code, which simultaneously fits the shape of the central spectrum and the radial profile of integrated intensity. Regarding the cores for which we have C17O (1-0) and C34S (2-1) data, the model fits these observations automatically when the standard isotopomer ratio is assumed. As a result of this modeling, we also find that the gas kinetic temperature in each core is constant at approximately 10 K. In agreement with previous work, we find that if the dust temperature is also constant, then the density profiles are centrally flattened, and we can model them with a single analytic expression. We also find that for each core the turbulent line width seems constant in the inner 0.1 pc. The very strong abundance drop of CO and CS toward the center of each core is naturally explained by the depletion of these molecules onto dust grains at densities of (2-6) × 104 cm-3. N2H+ seems unaffected by this process up to densities of several times 105 cm-3, or even 106 cm-3, while the NH3 abundance may be enhanced by its lack of depletion and by reactions triggered by the disappearance of CO from the gas phase. With the help of the Monte Carlo modeling, we show that chemical differentiation automatically explains the discrepancy between the sizes of CS and NH3 maps, a problem that has remained unexplained for more than a decade. Our models, in addition, show that a combination of radiative transfer effects can give rise to the previously observed discrepancy in the line width of these two tracers. Although this discrepancy has been traditionally interpreted as resulting from a systematic increase of the turbulent line width with radius, our models show that it can arise in conditions of constant gas turbulence.


Astronomy and Astrophysics | 2004

On the internal structure of starless cores - I. Physical conditions and the distribution of CO, CS, N

M. Tafalla; P. C. Myers; P. Caselli; C. M. Walmsley

We have characterized the physical structure and chemical composition of two close-to-round starless cores in Taurus-Auriga, L1498 and L1517B. Our analysis is based on high angular resolution observations in at least two transitions of NH3 ,N 2H + ,C S, C 34 S, C 18 O, and C 17 O, together with maps of the 1.2 mm continuum. For both cores, we derive radial profiles of constant temperature and constant turbulence, together with density distributions close to those of non-singular isothermal spheres. Using these physical conditions and a Monte Carlo radiative transfer model, we derive abundance profiles for all species and model the strong chemical differentiation of the core interiors. According to our models, the NH3 abundance increases toward the core centers by a factor of several (≈5) while N2H + has a constant abundance over most of the cores. In contrast, both C 18 O and CS (and isotopomers) are strongly depleted in the core interiors, most likely due to their freeze out onto grains at densities of a few 10 4 cm −3 . Concerning the kinematics of the dense gas, we find (in addition to constant turbulence) a pattern of internal motions at the level of 0.1 km s −1 . These motions seem correlated with asymmetries in the pattern of molecular depletion, and we interpret them as residuals of core contraction. Their distribution and size suggest that core formation occurs in a rather irregular manner and with a time scale of a Myr. A comparison of our derived core properties with those predicted by supersonic turbulence models of core formation shows that our Taurus cores are much more quiescent than representative predictions from these models. In two appendices at the end of the paper we present a simple and accurate approximation to the density profile of an isothermal (Bonnor-Ebert) sphere, and a Monte Carlo-calibrated method to derive gas kinetic temperatures using NH3 data.


The Astrophysical Journal | 2002

\mathsf{_2}

P. Caselli; C. M. Walmsley; A. Zucconi; M. Tafalla; L. Dore; P. C. Myers

The maps presented in Paper I are here used to infer the variation of the column densities of HCO+, DCO+, N2H+, and N2D+ as a function of distance from the dust peak. These results are interpreted with the aid of a crude chemical model that predicts the abundances of these species as a function of radius in a spherically symmetric model with radial density distribution inferred from the observations of dust emission at millimeter wavelengths and dust absorption in the infrared. Our main observational finding is that the N(N2D+)/N(N2H+) column density ratio is of order 0.2 toward the L1544 dust peak as compared to N(DCO+)/N(HCO+) = 0.04. We conclude that this result, as well as the general finding that N2H+ and N2D+ correlate well with the dust, is caused by CO being depleted to a much higher degree than molecular nitrogen in the high-density core of L1544. Depletion also favors deuterium enhancement, and thus N2D+, which traces the dense and highly CO-depleted core nucleus, is much more enhanced than DCO+. Our models do not uniquely define the chemistry in the high-density depleted nucleus of L1544, but they do suggest that the ionization degree is a few times 10-9 and that the ambipolar diffusion timescale is locally similar to the free-fall time. It seems likely that the lower limit, which one obtains to ionization degree by summing all observable molecular ions, is not a great underestimate of the true ionization degree. We predict that atomic oxygen is abundant in the dense core and, if so, H3O+ may be the main ion in the central highly depleted region of the core.


The Astrophysical Journal | 1998

H

M. Tafalla; Diego Mardones; P. C. Myers; P. Caselli; R. Bachiller; Priscilla J. Benson

We present a multiline study of the dense core L1544 in the Taurus molecular complex. Although L1544 does not harbor an embedded star, it presents several characteristics of cores that have already undergone star formation, suggesting that it may be rather advanced in its evolution toward becoming a star-forming core. The spectral lines from L1544 present an interesting dichotomy, with the thick dense gas tracers su†ering very strong self absorption while CO and its isotopes are not being absorbed at all. The presence of the self absorptions allows us to study both the density structure and kinematics of the gas in detail. A simple analysis shows that the core is almost isothermal and that the self absorptions are due to very subthermal excitation of the dense gas tracers in the outer layers. The density has to decrease outward rapidly, and a detailed radiative transfer calculation that simultaneously -ts three iso- topes of CO and two of CS shows that the density approximately follows a r~1.5 power law. The self absorptions, in addition, allow us to measure the relative velocity between the inner and outer layers of the core, and we -nd that there is a global pattern of inward motions (background and foreground approaching each other). The relative speed between the foreground and background changes with posi- tion, and we use a simple two-layer model to deduce that while the foreground gas has a constant veloc- ity, the background material presents systematic velocity changes that we interpret as arising from two velocity components. We explore the origin of the inward motions by comparing our observations with models of gravitational collapse. A model in which the infall starts at the center and propagates outward (as in the inside-out collapse of Shu) is inconsistent with the large extension of the absorption (that sug- gests an advanced age) and the lack of a star at the core center (that suggests extreme youth). Ambipolar di†usion seems also ruled out because of the large amount of the inward speed (up to 0.1 km s~1) and the fact that ionized species move with speeds similar to those of the neutrals. Other infall models seem also to have problems -tting the data, so if L1544 is infalling, it seems to be doing so in a manner not contemplated by the standard theories of star formation. Our study of L1544 illustrates how little is still known about the physical conditions that precede star formation and how detailed studies of starless cores are urgently needed. Subject headings: ISM: individual (L1544) E ISM: kinematics and dynamics E stars: formation


Publications of the Astronomical Society of the Pacific | 2011

\mathsf{^+}

E. F. van Dishoeck; L. E. Kristensen; Arnold O. Benz; Edwin A. Bergin; P. Caselli; J. Cernicharo; Fabrice Herpin; M. R. Hogerheijde; D. Johnstone; R. Liseau; B. Nisini; R. Shipman; M. Tafalla; F. F. S. van der Tak; F. Wyrowski; Yuri Aikawa; R. Bachiller; Alain Baudry; M. Benedettini; P. Bjerkeli; Geoffrey A. Blake; Sylvain Bontemps; J. Braine; C. Brinch; S. Bruderer; L. Chavarria; C. Codella; F. Daniel; Th. de Graauw; E. Deul

Water In Star-forming regions with Herschel (WISH) is a key program on the Herschel Space Observatory designed to probe the physical and chemical structures of young stellar objects using water and related molecules and to follow the water abundance from collapsing clouds to planet-forming disks. About 80 sources are targeted, covering a wide ranee of luminosities-from low ( 10(5) L-circle dot)-and a wide range of evolutionary stages-from cold prestellar cores to warm protostellar envelopes and outflows to disks around young stars. Both the HIFI and PACS instruments are used to observe a variety of lines of H2O, (H2O)-O-18 and chemically related species at the source position and in small maps around the protostars and selected outflow positions. In addition, high-frequency lines of CO, (CO)-C-13, and (CO)-O-18 are obtained with Herschel and are complemented by ground-based observations of dust continuum, HDO, CO and its isotopologs, and other molecules to ensure a self-consistent data set for analysis. An overview of the scientific motivation and observational strategy of the program is given, together with the modeling approach and analysis tools that have been developed. Initial science results are presented. These include a lack of water in cold gas at abundances that are lower than most predictions, strong water emission from shocks in protostellar environments, the importance of UV radiation in heating the gas along outflow walls across the full range of luminosities, and surprisingly widespread detection of the chemically related hydrides OH+ and H2O+ in outflows and foreground gas. Quantitative estimates of the energy budget indicate that H2O is generally not the dominant coolant in the warm dense gas associated with protostars. Very deep limits on the cold gaseous water reservoir in the outer regions of protoplanetary disks are obtained that have profound implications for our understanding of grain growth and mixing in disks.


The Astrophysical Journal | 2005

, and NH

Yuri Aikawa; Eric Herbst; Helen Roberts; P. Caselli

The gravitational collapse of a spherical cloud core is investigated by numerical calculations. The initial conditions of the core lie close to the critical Bonnor-Ebert sphere with a central density of ~104 cm-3 in one model (α = 1.1), while gravity overwhelms pressure in the other (α = 4.0), where α is the internal gravity-to-pressure ratio. The α = 1.1 model shows reasonable agreement with the observed velocity field in prestellar cores. Molecular distributions in cores are calculated by solving a chemical reaction network that includes both gas-phase and grain-surface reactions. When the central density of the core reaches 105 cm-3, carbon-bearing species are significantly depleted in the central region of the α = 1.1 model, while the depletion is only marginal in the other model. The two different approaches encompass the observed variations of molecular distributions in different prestellar cores, suggesting that molecular distributions can be probes of contraction or accumulation timescales of cores. The central enhancement of the NH3/N2H+ ratio, which is observed in some prestellar cores, can be reproduced under certain conditions by adopting recently measured branching fractions for N2H+ recombination. Various molecular species, such as CH3OH and CO2, are produced by grain-surface reactions. The ice composition depends sensitively on the assumed temperature. Multideuterated species are included in our most recent gas-grain chemical network. The deuterated isotopomers of H are useful as probes of the central regions of evolved cores, in which gas-phase species with heavy elements are strongly depleted. At 10 K, our model can reproduce the observed abundance ratio of ND3/NH3 but underestimates the isotopic ratios of deuterated to normal methanol.


The Astrophysical Journal | 1993

\mathsf{_3}

P. Caselli; T. I. Hasegawa; Eric Herbst

We present a dynamical-chemical model of massive star-forming regions, in which gas and dust grains are included. We consider the last 10 5 . yr of the accretion phase of a protostellar object embedded in a dense and massive cloud with a density and temperature gradient. We follow the gas and grain chemical evolution of two collapsing shells of this cloud, until the end of the protostar accretion phase, at which time the density no longer increases. At this point, the temperature rises, the molecular mantles of the grains evaporate, and we follow the time evolution of the resultant gas chemistry. The scenario is based on earlier models of Millar, Brown, Charnley, and Tielens


The Astrophysical Journal | 2008

in L1498 and L1517B

Jaime E. Pineda; P. Caselli; Alyssa A. Goodman

We use data gathered by the COMPLETE survey of star-forming regions to find new calibrations of the X-factor and 13CO abundance within the Perseus molecular cloud. We divide Perseus into six subregions, using groupings in a dust temperature vs. LSR velocity plot. The standard X-factor, -->X ? N(H2)/W(12CO) , is derived both for the whole Perseus complex and for each of the six subregions with values consistent with previous estimates. However, the X-factor is heavily affected by the saturation of the emission above -->AV ~ 4 mag, and variations are also found between regions. Linear fits to relate -->W(12CO) and -->AV using only points below 4 mag of extinction yield a better estimate of the -->AV than the X-factor. Linear relations of -->W(13CO) , N(13CO) , and -->W(C18O) with -->AV are derived. The extinction thresholds above which 13CO(1-0) and C18O(1-0) are detected are about 1 mag larger than previous estimates, so that a more efficient shielding is needed for the formation of CO than previously thought. The 12CO and 13CO lines saturate above 4 and 5 mag, respectively, whereas C18O(1-0) never saturates in the whole -->AV range probed by our study (up to 10 mag). Approximately 60% of the positions with 12CO(1-0) emission have subthermally excited lines, and almost all positions have excitation temperatures below the dust temperature. PDR models, using the Meudon code, can explain the 12CO(1-0) and 13CO(1-0) emission with densities ranging between 103 and 104 cm?3. In general, local variations in the volume density and nonthermal motions (linked to different star formation activity) can explain the observations. Higher densities are needed to reproduce CO data toward active star-forming sites, such as NGC 1333, where the larger internal motions driven by the young protostars allow more photons from the embedded high-density cores to escape the cloud. In the most quiescent region, B5, the 12CO and 13CO emission appears to arise from an almost uniform thin layer of molecular material at densities around 104 cm?3, and in this region the integrated intensities of the two CO isotopologues are the lowest in the whole complex.


Astronomy and Astrophysics | 2012

Molecular Ions in L1544. II. The Ionization Degree

L. E. Kristensen; E. F. van Dishoeck; Edwin A. Bergin; R. Visser; U. A. Yıldız; I. San Jose-Garcia; Jes K. Jørgensen; Gregory J. Herczeg; D. Johnstone; S. F. Wampfler; Arnold O. Benz; S. Bruderer; S. Cabrit; P. Caselli; S. D. Doty; D. Harsono; Fabrice Herpin; M. R. Hogerheijde; A. Karska; T. A. van Kempen; R. Liseau; B. Nisini; M. Tafalla; F. F. S. van der Tak; F. Wyrowski

Context. Water is a key tracer of dynamics and chemistry in low-mass star-forming regions, but spectrally resolved observations have so far been limited in sensitivity and angular resolution, and only data from the brightest low-mass protostars have been published. Aims. The first systematic survey of spectrally resolved water emission in 29 low-mass (L 10 km s(-1)). The water abundance in the outer cold envelope is low, greater than or similar to 10(-10). The different H2O profile components show a clear evolutionary trend: in the younger Class 0 sources the emission is dominated by outflow components originating inside an infalling envelope. When large-scale infall diminishes during the Class I phase, the outflow weakens and H2O emission all but disappears.


The Astronomy and Astrophysics Review | 2012

L1544: A Starless Dense Core with Extended Inward Motions

P. Caselli; C. Ceccarelli

Our Sun and planetary system were born about 4.5 billion years ago. How did this happen, and what is the nature of our heritage from these early times? This review tries to address these questions from an astrochemical point of view. On the one hand, we have some crucial information from meteorites, comets and other small bodies of the Solar System. On the other hand, we have the results of studies on the formation process of Sun-like stars in our Galaxy. These results tell us that Sun-like stars form in dense regions of molecular clouds and that three major steps are involved before the planet-formation period. They are represented by the prestellar core, protostellar envelope and protoplanetary disk phases. Simultaneously with the evolution from one phase to the other, the chemical composition gains increasing complexity.In this review, we first present the information on the chemical composition of meteorites, comets and other small bodies of the Solar System, which is potentially linked to the first phases of the Solar System’s formation. Then we describe the observed chemical composition in the prestellar core, protostellar envelope and protoplanetary-disk phases, including the processes that lead to them. Finally, we draw together pieces from the different objects and phases to understand whether and how much we inherited chemically from the time of the Sun’s birth.

Collaboration


Dive into the P. Caselli's collaboration.

Top Co-Authors

Avatar

C. Ceccarelli

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Tafalla

University of California

View shared research outputs
Top Co-Authors

Avatar

J. Cernicharo

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. Caux

University of Toulouse

View shared research outputs
Researchain Logo
Decentralizing Knowledge