Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where P. Chris Wilson is active.

Publication


Featured researches published by P. Chris Wilson.


Journal of Agricultural and Food Chemistry | 2013

Analysis of bisphenol A, nonylphenol, and natural estrogens in vegetables and fruits using gas chromatography-tandem mass spectrometry.

Jian Lu; Jun Wu; Peter J. Stoffella; P. Chris Wilson

Bisphenol A (BPA), nonylphenol (NP), and steroidal estrogens in vegetables and fruits were analyzed using gas chromatography with tandem mass spectrometry (GC-MS/MS). Isotope dilution standards were spiked before the extraction to account for extraction inefficiency and loss of analytes during sample workup. Recoveries were >90% for all of the compounds in each matrix. The limit of detection (LOD) ranged from 0.03 to 0.3 μg kg(-1), whereas the limit of quantitation (LOQ) ranged from 0.1 to 1.0 μg kg(-1). All analytes can be monitored in a single GC-MS/MS run with a run time of 20 min. Occurrence of these endocrine-disrupting chemicals (EDCs) in vegetables and fruits from local markets was observed using the established analytical method. BPA was detected in all vegetable and fruit samples, ranging from 0.2 ± 0.1 to 9.0 ± 4.9 μg kg(-1), indicating significant exposure potential for humans. NP was detected in pumpkin, sweet potato, citrus, and apple samples. The concentration of 4-n-NP ranged from 5.3 ± 2.4 to 18.9 ± 8.0 μg kg(-1), whereas that of 4-NP ranged from 5.1 ± 2.6 to 12.2 ± 3.6 μg kg(-1). Concentrations of 17-β-estradiol in vegetables and fruits ranged from 1.3 ± 0.4 to 2.2 ± 1.0 μg kg(-1) except those in tomato and strawberry, in which no 17-β-estradiol was detected. The estimated daily intake of 17-β-estradiol was beyond the recommended acceptable daily intake (ADI) for children as recommended by the Joint FAO/WHO Expert Committee on Food Additives (JECFA).


Environmental Toxicology and Chemistry | 2006

Survey of carbamate and organophosphorous pesticide export from a South Florida (USA) agricultural watershed: Implications of sampling frequency on ecological risk estimation

P. Chris Wilson; Jane Ferguson Foos

The objectives of the present study were to characterize the presence of selected carbamate and organophosphorous pesticides in Ten Mile Creek (Fort Pierce, FL, U.S.A.) and to evaluate the implications of sampling frequency on ecological risk estimates. Ten Mile Creek originates in a predominately agricultural watershed that is drained by an extensive network of cross-linked canals. Water samples were collected daily or every other day and were analyzed for azinphos-methyl, chlorpyrifos, diazinon, dimethoate, ethion, fenamiphos, malathion, methidathion, carbaryl, carbofuran, 3-hydroxycarbofuran, methiocarb, methomyl, oxamyl, and propoxur. A total of 457 samples were analyzed for the carbamate suite, and a total of 332 samples were analyzed for the organophosphorous suite. Carbaryl was detected in eight samples; half of these detections occurred on four consecutive days (October 26-29, 2001) at concentrations ranging from 0.33 to 0.95 microg/L. Methomyl was detected in samples collected on five consecutive days (March 30-April 3, 2002) at concentrations ranging from 1.0 to 2.2 microg/L. Oxamyl was detected in four samples, three of which occurred on three consecutive days (February 17-19, 2002) at concentrations ranging from 6.2 to 6.8 microg/L. The carbamates propoxur, 3-hydroxycarbofuran, carbofuran, and methiocarb were not detected. Diazinon and ethion were the only organophosphorous pesticides detected. Diazinon was detected at 0.9 and 0.7 microg/L on January 5, 2002, and on January 6, 2002, respectively. Ethion was detected in 18 consecutive samples (August 3-20, 2001). The mean, maximum, minimum, and median detected concentrations were 0.38, 0.61, 0.30, and 0.33 microg/L, respectively. Results indicate that frequent sampling is necessary to characterize the presence of these pesticides in this intensively drained watershed. This conclusion also may apply to similar canalized watersheds.


Journal of Chromatography A | 2012

Isotope dilution-gas chromatography/mass spectrometry method for the analysis of alkylphenols, bisphenol A, and estrogens in food crops.

Jian Lu; Jun Wu; Peter J. Stoffella; P. Chris Wilson

A gas chromatography/mass spectrometry (GC/MS)-based isotope dilution technique was developed for determination of environmental estrogens in vegetables and fruits. The isotopically labeled standards of related environmental estrogens were used as the isotope dilution standards (IDS) to form the following analyte/surrogate pairings: octylphenol/(13)C6-4-n-nonylphenol, 4-n-nonylphenol/(13)C6-4-n-nonylphenol, 4-nonylphenol/(13)C6-4-n-nonylphenol, bisphenol A/(13)C12-bisphenol A, estrone/(13)C6-estrone, 17-α-estradiol/(13)C6-β-estradiol, 17-β-estradiol/(13)C6-β-estradiol, 17-α-ethynylestradiol/(13)C2-17-α-ethynylestradiol, and estriol/D4-estriol. Plant samples were homogenized and extracted ultrasonically with acetone. Acid pretreatment greatly increased peak intensities for the analytes. Acid hydrolysis pretreatment was important for liberating conjugates of estrogenic contaminants in plant materials. Recoveries of the spiked analytes were greater than 90%. Method limits of detection (LOD) ranged from 0.01 to 0.20 μg kg(-1) while limits of quantification (LOQ) ranged from 0.04 to 0.60 μg kg(-1). Bisphenol, nonylphenol, and natural estrogens were detected in vegetable and fruit samples obtained from local markets, illustrating the feasibility of this method for determining trace estrogenic contaminants in vegetables and fruits. The method has significant environmental implications in terms of the simultaneous analysis of estrogenic contaminants in vegetables and fruit.


Science of The Total Environment | 2012

Scenario analysis for sustainable development of Chongming Island: water resources sustainability.

Xiong Ni; Yanqing Wu; Jun Wu; Jian Lu; P. Chris Wilson

With the socioeconomic and urban development of Chongming Island (the largest alluvial island in the world), water demand is rapidly growing. To make adjustments to the water utilization structure of each industry, allocate limited water resources, and increase local water use efficiency, this study performed a scenario analysis for the water sustainability of Chongming Island. Four different scenarios were performed to assess the water resource availability by 2020. The growth rate for water demand will be much higher than that of water supply under a serious situation prediction. The water supply growth volume will be 2.22 × 10(8)m(3) from 2010 to 2020 under Scenario I and Scenario II while the corresponding water demand growth volume will be 2.74 × 10(8)m(3) and 2.64 × 10(8)m(3), respectively. There will be a rapid growth in water use benefit under both high and low development modes. The water use benefit will be about 50 CNY/m(3) under Scenarios I and II in 2020. The production structure will need to be adjusted for sustainable utilization of water resources. Sewage drainage but not the forest and grass coverage rate will be a major obstacle to future development and environmental quality. According to a multi-level fuzzy comprehensive evaluation, Scenario II is finally deemed to be the most desirable plan, suggesting that the policy of rapid socioeconomic development and better environmental protection may achieve the most sustainable development of Chongming Island in the future.


Journal of Hazardous Materials | 2015

Uptake and distribution of bisphenol A and nonylphenol in vegetable crops irrigated with reclaimed water

Jian Lu; Jun Wu; Peter J. Stoffella; P. Chris Wilson

The potential uptake and distribution of bisphenol A (BPA) and nonylphenol (NP) (from reclaimed irrigation water) in edible crops was investigated. BPA and NP were spiked into simulated reclaimed water at environmentally relevant concentrations. Two crops (lettuce, Lactuca sativa and tomato, Lycopersicon esculentum) were grown hydroponically in a greenhouse using the spiked irrigation water under two irrigation exposure scenarios (overhead foliar exposure and subsurface root exposure). BPA concentrations in tomato fruit were 26.6 ± 5.8 (root exposure) and 18.3 ± 3.5 (foliar exposure) μg kg(-1), while concentrations in lettuce leaves were 80.6 ± 23.1 (root exposure) and 128.9 ± 17.4 (foliar exposure) μg kg(-1). NP concentrations in tomato fruit were 46.1 ± 6.6 (root exposure) and 24.6 ± 6.4 (foliar exposure) μg kg(-1), while concentrations in lettuce leaves were 144.1 ± 9.2 (root exposure) and 195.0 ± 16.9 (foliar exposure) μg kg(-1). BPA was relatively mobile in lettuce plants regardless of exposure route. Limited mobility was observed for NP in both crops and BPA in tomatoes. The estimated daily intake of BPA and NP through consumption of vegetables irrigated with reclaimed water ranged from 8.9-62.9 to 11.9-95.1 μg, respectively, depending on the exposure route.


Bioresource Technology | 2011

Acid tolerance of an acid mine drainage bioremediation system based on biological sulfate reduction

Jian Lu; Tianhu Chen; Jun Wu; P. Chris Wilson; Xiangyang Hao; Jiazhong Qian

The acid tolerance response of an AMD bioremediation system based on sulfate reduction was investigated. Efficient sulfate reduction was observed with a maximum sulfate reduction rate of 12.3±0.8 mg L(-1) d(-1) and easily available organic carbon was released during high acid treatment with an initial pH of 2.0. The rapid increase in sulfate reduction was observed when the extreme acid treatment with an initial pH of 1.0 was stopped. Column experiment on acid shock showed that efficient sulfate reduction was maintained while precipitation of Cu or Zn still occurred during extreme or high acid shock. More than 98% of Cu and 85% of Zn were removed in the high acid column experiment with influent pH of 2.0. The majority bacteria in the remediation system used for high acid drainage belonged to genera Clostridiaceae, Eubacterium, Pseudobutyrivibrio, and Clostridium. These findings showed high acid tolerance of the straw remediation system.


Science of The Total Environment | 2011

Characterization of selected organo-nitrogen herbicides in south florida canals: Exposure and risk assessments

P. Chris Wilson; Brian J. Boman

Much uncertainty exists regarding the discharge characteristics of terrestrial-use herbicides into aquatic systems. This study evaluated the temporal distribution and concentrations of five commonly used herbicides (atrazine, bromacil, metolachlor, norflurazon, and simazine) in a typical South Florida watershed. Surface water samples were collected weekly over a 3-yr period from four canals and Ten Mile Creek. These systems received drainage water from a variety of land-uses, including residential, pastures, and citrus production. Herbicides were extracted and analyzed by GC-MS/SIM. Atrazine was most frequently detected (87% of samples) in the canal serving the residentially developed sub-basin, with median and maximum concentrations of 0.43 and 6.67 μg L(-1), respectively. Norflurazon was most frequently detected (90-95% of samples) in the systems serving agricultural production areas, with median and maximum concentrations ranging from 0.37-0.63 μg L(-1) and 1.98-6.97 μg L(-1), respectively. Bromacil was detected in 14-36% of samples with median and maximum concentrations ranging from 0.50-0.67 μg L(-1) and 2.31-4.96 μg L(-1), respectively. Metolachlor was detected in 1.8-10% of the samples, with median and maximum concentrations ranging from 0.16-0.2 μgL(-1) and 0.17-1.55 μg L(-1), respectively. Simazine was detected in 10-35% of the samples, with median and maximum concentrations ranging from 0.18-0.28 μg L(-1) and 0.37-1.35 μg L(-1), respectively. Bromacil+norflurazon was the most commonly detected (240 samples of 1060 total) binary combination of herbicides; whereas bromacil+norflurazon+simazine was the most frequently detected tertiary combination (58 samples). While detectable concentrations were present for significant periods of time, risks of acute toxicity were relatively low; affecting <1% of the potentially affected fraction (PAF) of plant species based on 90th centile exposure concentrations and 10th centile effects concentrations from species sensitivity distributions.


Environmental Toxicology and Chemistry | 2010

Toxicity of the herbicides bromacil and simazine to the aquatic macrophyte, Vallisneria americana Michx

P. Chris Wilson; Sandra B. Wilson

Vallisneria americana Michx. (tapegrass) is an ecologically important submersed, vascular aquatic plant that provides food and shelter for many aquatic and waterfowl species. This plant often occurs close to land areas where herbicides are used. Nontarget exposure of these plants to herbicides may compromise ecological structure and function. The objective of the present study was to evaluate the suitability of several endpoint measurements for determining no-observable-adverse effect concentrations (NOAECs), lowest-observable-adverse effect concentrations (LOAECs), and median effective concentration values (EC50s) for tapegrass exposed to the herbicides bromacil (0-0.092 mg/L) and simazine (0-0.592 mg/L) following a 13-d single-pulse exposure and 15-d (bromacil) or 14-d (simazine) postexposure periods. The NOAEC/LOAEC/EC50 for fresh weight gains, new leaf production, and total leaf growth after 13-d exposure to bromacil were 0.020/0.036/0.032, 0.036/0.054/0.036, and 0.036/0.054/0.043 mg/L, respectively. The same respective NOAEC/LOAEC/EC50s for simazine were <0.058/0.058/0.067, 0.229/0.344/0.154, and 0.058/0.116/0.081 mg/L. Reductions in quantity and fresh weight of daughter plants produced and stolon fresh weights occurred at bromacil concentrations > or = 77, 0.020, and 0.036 mg/L, respectively; and simazine concentrations > or = 0.344, >0.592, and > or = 0.116 mg/L, respectively. Neither herbicide affected leaf greenness, total chlorophyll concentrations, or carbohydrate allocation. Although toxicity was shown for many endpoints, most EC50 values were greater than aquatic life benchmark values for algae used by the U.S. Environmental Protection Agency (U.S. EPA), but less than for aquatic plants, indicating that V. americana would likely be protected by use of the algal benchmark criteria.


Science of The Total Environment | 2016

Septic systems as hot-spots of pollutants in the environment: Fate and mass balance of micropollutants in septic drainfields

Yun-Ya Yang; Gurpal S. Toor; P. Chris Wilson; Clinton F. Williams

Septic systems, a common type of onsite wastewater treatment systems, can be an important source of micropollutants in the environment. We investigated the fate and mass balance of 17 micropollutants, including wastewater markers, hormones, pharmaceuticals and personal care products (PPCPs) in the drainfield of a septic system. Drainfields were replicated in lysimeters (1.5m length, 0.9m width, 0.9m height) and managed similar to the field practice. In each lysimeter, a drip line dispersed 9L of septic tank effluent (STE) per day (equivalent to 32.29L/m(2) per day). Fourteen micropollutants in the STE and 12 in the leachate from drainfields were detected over eight months. Concentrations of most micropollutants in the leachate were low (<200ng/L) when compared to STE because >85% of the added micropollutants except for sucralose were attenuated in the drainfield. We discovered that sorption was the key mechanism for retention of carbamazepine and partially for sulfamethoxazole, whereas microbial degradation likely attenuated acetaminophen in the drainfield. This data suggests that sorption and microbial degradation limited transport of micropollutants from the drainfields. However, the leaching of small amounts of micropollutants indicate that septic systems are hot-spots of micropollutants in the environment and a better understanding of micropollutants in septic systems is needed to protect groundwater quality.


Frontiers of Environmental Science & Engineering in China | 2016

Photocatalytic degradation of polybrominated diphenyl ethers in pure water system

Min Zhang; Jian Lu; Yiliang He; P. Chris Wilson

Due to the low water solubility of polybrominated diphenyl ethers, organic solvent is usually added into the oxidation system to enhance the removal efficiency. In this study the photocatalytic degradation of decabromodiphenyl ether (BDE209), a type of polybrominated diphenyl ether used throughout the world, in pure water without the addition of organic solvent was investigated. In the pure water system, BDE209 was not dissolved but dispersed as nano-scale particles with a mean diameter of 166 nm. Most of BDE209 (>98%) were removed within 4 h and the final debromination ratio was greater than 80%. Although the addition of organic solvent (tetrahydrofuran, THF) could lead to a relatively high BDE209 degradation rate, the final debromination ratio (<50%) was much lower than that in pure water system. Major oxidation intermediates of tetrahydrofuran, including tetrahydro-2-furanol and γ-butyrolactone, were detected indicating the engagement of THF in the BDE209 degradation process. The photocatalytic degradation of BDE209 in the pure water system followed first-order kinetics. The BDE209 degradation rate constant increased from 0.0011 to 0.0023 min−1 as the pH increased from 3 to 9.

Collaboration


Dive into the P. Chris Wilson's collaboration.

Top Co-Authors

Avatar

Jian Lu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jun Wu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Joseph P. Albano

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jane Ferguson Foos

Florida Department of Agriculture and Consumer Services

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Clinton F. Williams

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge