Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where P. Costagliola is active.

Publication


Featured researches published by P. Costagliola.


Science of The Total Environment | 2012

Concentration, distribution, and translocation of mercury and methylmercury in mine-waste, sediment, soil, water, and fish collected near the Abbadia San Salvatore mercury mine, Monte Amiata district, Italy

Valentina Rimondi; John E. Gray; P. Costagliola; Orlando Vaselli; Pierfranco Lattanzi

The distribution and translocation of mercury (Hg) was studied in the Paglia River ecosystem, located downstream from the inactive Abbadia San Salvatore mine (ASSM). The ASSM is part of the Monte Amiata Hg district, Southern Tuscany, Italy, which was one of the worlds largest Hg districts. Concentrations of Hg and methyl-Hg were determined in mine-waste calcine (retorted ore), sediment, water, soil, and freshwater fish collected from the ASSM and the downstream Paglia River. Concentrations of Hg in calcine samples ranged from 25 to 1500 μg/g, all of which exceeded the industrial soil contamination level for Hg of 5 μg/g used in Italy. Stream and lake sediment samples collected downstream from the ASSM ranged in Hg concentration from 0.26 to 15 μg/g, of which more than 50% exceeded the probable effect concentration for Hg of 1.06 μg/g, the concentration above which harmful effects are likely to be observed in sediment-dwelling organisms. Stream and lake sediment methyl-Hg concentrations showed a significant correlation with TOC indicating considerable methylation and potential bioavailability of Hg. Stream water contained Hg as high as 1400 ng/L, but only one water sample exceeded the 1000 ng/L drinking water Hg standard used in Italy. Concentrations of Hg were elevated in freshwater fish muscle samples and ranged from 0.16 to 1.2 μg/g (wet weight), averaged 0.84 μg/g, and 96% of these exceeded the 0.3 μg/g (methyl-Hg, wet weight) USEPA fish muscle standard recommended to protect human health. Analysis of fish muscle for methyl-Hg confirmed that >90% of the Hg in these fish is methyl-Hg. Such highly elevated Hg concentrations in fish indicated active methylation, significant bioavailability, and uptake of Hg by fish in the Paglia River ecosystem. Methyl-Hg is highly toxic and the high Hg concentrations in these fish represent a potential pathway of Hg to the human food chain.


American Mineralogist | 2004

Chemical speciation of Ag in galena by EPR spectroscopy

P. Costagliola; Francesco Di Benedetto; Marco Benvenuti; Gian Piero Bernardini; Curzio Cipriani; Pierfranco Lattanzi; Maurizio Romanelli

Abstract Electron paramagnetic resonance (EPR) spectroscopy has been used to study the valence state of silver in “argentiferous” galena samples from the Apuane Alps (Tuscany, Italy) mining district. This method was used to reveal primary metallic silver (Ag0) in galena. Both thermodynamic data and experimental studies suggest that galena and native silver can stably coexist, but have not been reported as a primary (hypogene) assemblage in natural samples. EPR spectroscopy proved to be a suitable tool to solve this problem, because this technique is capable of detecting paramagnetic species down to the ppb level, even in a highly absorbent matrix such as galena. A detailed SEM-EDS investigation could not detect metallic silver (or gold) in galena samples, but did reveal small (few micrometers) inclusions of Ag-bearing phases, in which silver has a formal valence of +1. On the other hand, EPR spectra indicated the presence in galena of pairs and clusters of elemental silver atoms, which may be associated with pairs of metallic gold, or with silver-gold hetero-atomic pairs. Therefore, SEM/EDS and EPR are complementary techniques, revealing the presence of both Ag+ and Ag0. The Ag(Au) metallic species were apparently deposited on the galena surface during its growth from mineralizing fluids. Their scarcity, and the presence of larger amounts of Ag1+ phases, suggest that the assemblage galena-metallic silver was stable only under peculiar physical and chemical conditions. The formation of Ag0 was presumably linked to local and rare chemical fluctuations of the hydrothermal environment, characterized by low activities of S, Sb, Bi (Cu…) and high activity of Ag in the fluids. The occurrence of both homo- and hetero-atomic pairs suggests either different kinetics of pair formation, or possible fluctuations in the composition of the hydrothermal fluids, which alternatively carried Ag or Au species, or both


Mineralogy and Petrology | 1998

Metamorphogenic barite-pyrite (Pb-Zn-Ag) veins at pollone, apuane alps, tuscany: vein geometry, geothermobarometry, fluid inclusions and geochemistry

P. Costagliola; Marco Benvenuti; Pierfranco Lattanzi; G. Tanelli

SummaryThe barite-pyrite-(Pb-Zn-Ag) deposit of Pollone is located in the southernmost tip of the Apuane Alps metamorphic core complex, and is hosted by a siliciclastic formation of pre-Norian age. The southern sector of the deposit mainly consists of stratiform, supposedly syngenetic, barite-pyrite orebodies, whereas the northern area is characterized by a barite-pyrite-(Pb-Zn-Ag) vein system. Vein geometry in the northern area is controlled by a shear zone, developed during the greenschist facies metamorphism which affected the Apuane Alps core complex between 27 and 8 Ma, that was responsible for fluid focusing and vein emplacement. At Pollone, arsenopyrite and chlorite geothermometers show broadly comparable results, and suggest local metamorphic peak temperatures between 320 and 350°C. Phengite geobarometry indicates minimum pressures of about 3.5 kbar. Fluid inclusion data and mineral equilibria suggest that the mineralizing fluids were initially hotter than the country rocks (about 450°C at 3.5–4.0 kbar). Rocks in direct contact with the orebodies are depleted in Rb and enriched in Sr in comparison to similar rocks elsewhere in the area. This is attributed to the presence of Rb-poor muscovite and Sr-rich barite. Rb-depleted muscovites suggest mineral-fluid interaction in a rock reservoir characterized by a different (modal) mineralogical composition than the Pollone host rocks. The progressive decrease of Sr in barite with increasing distance from the orebodies may be explained with a temperature decrease along the infiltration paths of mineralizing fluids (i.e., from the vein into the wall rocks). The similar O-isotope composition of quartz from veins and host rocks is explained with the overall homogeneous O-isotope composition of the Alpi Apuane basement rocks. This indicates a limited interaction between mineralizing fluids and the rocks exposed at Pollone. Remobilization of syngenetic orebodies was conceivably of minor importance in the production of metamorphogenec veins. Fluid cooling along a major tectonic lineament is thought to be responsible for barite deposition.ZusammenfassungDie Baryt-Pyrit (Pb-Zn-Ag) Lagerstätte von Pollone liegt im südlichsten Ende des metamorphen Kern-Komplexes der Apuanischen Alpen, und sitzt in einer siliziklastischen Formation prä-Norischen Alters auf. Der südliche Sektor der Lagerstätte besteht hauptsächlich aus stratiformen, wahrscheinlich syngenetischen Baryt-Pyrit-Erzkörpern, während der nördliche Teil des Gebietes durch ein Baryt-Pyrit (Pb-Zn-Ag) Gangsystem charakterisiert wird. Die Geometrie der Gänge im Nordteil wird durch eine Scherzone kontrolliert, die während einer grünschieferfaziellen Metamorphose entstanden ist, die den Kernkomplex der Apuanischen Alpen zwischen 27 und 8 Ma betroffen hat. Diese Scherzone war auch für die Zufuhr der Fluide und die Platznahme der Gänge verantwortlich. In Pollone zeigen Arsenopyrit- und Chlorit-Geothermometrie weithin vergleichbare Ergebnisse und weisen auf lokale Maximaltemperaturen der Metamorphose zwischen 320 und 350°C hin. Phengit-Geobarometrie läßt Minimal-Drucke von ungefähr 3,5 kbar erkennen. Fluidflüssigkeitseinschluß-Daten und Mineral-Gleichgewichte zeigen, daß die erzbringenden Fluide ursprünglich heißer als die Wirtsgesteine waren (ca. 450 °C für P von 3,5 bis 4 kbar). Gesteine, die im direkten Kontakt mit den Erzkörpern sind, zeigen eine Anreicherung an Rb und eine Anreicherung an Sr, im Vergleich mit ähnlichen Gesteinen, die im Gebiet anzutreffen sind. Dies wird auf das Vorkommen von Rb-armen Muscovit und Sr-reichen Baryt zurückgeführt. An Rbabgereicherte Muscovite legen Mineral-Fluid-Reaktionen nahe, die in einem Gesteinsreservoir abliefen, das durch eine andere mineralogische Zusammensetzung als die Wirtsgesteine von Pollone charakterisiert war. Der zunehmende Verlust von Sr im Baryt mit zunehmender Entfernung von den Erzkörpern, kann durch einen Temperaturabfall entlang der Infitrations-Pfade der erzführenden Lösungen erklärt werden (d.h. von Gang in die Nebengeseine). Die ähnliche Sauerstoff-Isotopen-Zusammensetzung für Quarz aus den Gängen und den Nebengesteinen läßt sich auf die allgemein homogene Sauerstoffisotopen-Signatur des Basements der Apuanischen Alpen zurückführen. Dies weist auf beschränkte Wechselwirkung zwischen erzführenden Lösungen und den in Pollone anstehenden Gesteinen hin. Die Remobilisation von syngenetischen Erzkörpern in Pollone war nur von geringer Bedeutung für die Entstehung der metamorphogenen Gänge. Abkühlung der Fluide an einem wichtigen tektonischen Lineament gilt als Ursache für den Absatz von Baryt.


Mineralogy and Petrology | 1992

Source of metals in metamorphic ore-forming processes in the Apuane Alps (NW Tuscany, Italy): Constraints by Pb-isotope data

Pierfranco Lattanzi; W. Hansmann; V. Koeppel; P. Costagliola

SummaryA total of 19 samples of sulfides, barite and country rocks from three important deposits of the Apuane Alps district (Bottino, Pollone and Monte Arsiccio) were analyzed for Pb-isotopic compositions. Ore lead shows a fairly homogeneous isotopic signature (206/204: 18.2-18.4; 207/204 ≈ 15.7; 208/204: 38.5-38.6), defining a high μ, high W province suggestive of an evolution in a crustal environment since at least the Middle Proterozoic. Pb-Pb model age of the ores is in the order of ≈ 350 Ma, in gross agreement with the Lower-Middle Paleozoic age assigned to most country rocks. The present-day Pb-isotope ratios of presumed exhalative tourmalinites associated with the Bottino deposit and of other country rocks from mineralized areas are also similar. Moreover, most of these rocks show relatively high total Pb contents (> 70 ppm). HCl-soluble lead in these samples also has a roughly similar isotopic signature. In contrast, rock samples collected at greater distances from mineralized bodies have lower Pb concentrations (< 10 ppm) and more radiogenic 206/204 and 208/204 ratios (18.6 to 18.9 and 38.9 to 39.3 respectively). HCl-soluble lead in these samples has distinctly lower 208/204, and to a lesser extent 206/204 ratios (38.6 to 38.9 and 18.5 to 18.9 respectively). In agreement with previously established genetic models, these results may be interpreted in terms of a major episode of lead extraction in the Paleozoic, possibly in association with exhalative tourmalinites, followed by remobilization and reconcentration in vein mineralization during the Apenninic orogeny. The isotopic signature of country rocks in mineralized areas may be ascribed to a “Pb-isotope halo effect” induced by metamorphism. When compared with Pb-isotope data from deposits of the southern Tuscany mining district, the ore lead in Apuane Alps exhibits similar isotopic patterns, but with lower 208/204 and 206/204 ratios. This fact suggests for the two districts source(s) with similar evolutions of their U/Pb and Th/Pb ratios, but distinctly different times of Pb extraction.ZusammenfassungIn den Apuanischen Alpen (NW Toskana) treten prämetamorphe, schichtförmige Fe-Ba Erzlagerstätten in grünschieferfaziell metamorphen Serien sedimentären und vulkanosedimentären Ursprungs auf (e.g. Pollone und Monte Arsiccio), die von syn- bis spätkinematisch gebildeten, diskordanten Vererzungen begleitet werden. Ein Gangsystem mit Quarz, Karbonat und Pb-Zn-Ag (Bottino) wird von einem stratiformen Turmalinithorizont mit erhöhten Metallgehalten begleitet.Um die Frage eines metamorphogenen Ursprungs der gangförmigen Vererzungen im Gefolge der Appenninischen Metamorphose (Oligozän-Miozän) und die vermutete Herkunft der Metalle aus den schichtförmigen Lagerstätten und Metallanreicherungen zu überprüfen, wurden Pb-Isotopenuntersuchungen an Sulfiden, Bariten, Turmaliniten und Nebengesteinen durchgeführt. Das Erzblei aus stratiformen wie auch gangförmigen Lagerstätten zeigt nur geringe Variationen der Pb-isotopenverhältnisse und ist innerhalb eines Vorkommens homogen (206/204: 18.2-18.4; 207/204: 15.68; 208/204: 38.538.6). Seine relativ hohen μ- and W-Werte weisen auf eine Bleientwicklung in kontinentalem Krustenmilieu, spätestens seit dem mittleren Proterozoikum hin. Die 207/206 Modellalter von ca. 350 Ma stimmen größenordnungmäßig mit dem vermuteten paläozoischen Alter des Nebengesteins überein, sind aber für die gangförmigen tertiären Vorkommen zu hoch. Baryt-, Turmalinit- und Gesamtgesteinsproben aus der Nähe der Lagerstätten zeigen alle ähnliche Pb-Isotopenverhältnisse wie die Sulfide. Die Gesteine weisen hohe Pb-Gehalte von > 70 ppm auf. In größerer Entfernung zu den Lagerstätten sind die Pb-Gehalte mit < 10 ppm deutlich niedriger und die Pb-Isotopenverhältnisse sind radiogener (206/204: 18.8-18.9; 208/204: 38.9-39.3). Ihr HCl-1ösliches Blei ist hingegen weniger radiogen.Die Resultate stützen die neueren Ansichten, daß es im Paläozoikum zur Bildung von exbalativen Turmaliniten verbunden mit einer Metallanreicherung und von stratiformen Fe-Ba-Lagerstätten kam. Während der appenninischen Metamorphose wurden die Metalle remobilisiert, und es kam zur Bildung von gangförmigen Vorkommen und Lagerstätten. Die hohen Pb-Gehalte der Nebengesteine und die Isotopensignatur des HC1-löslichen Bleis deuten auf eine metamorphogene Halo-Bildung. Die Bleiisotopen von jungtertiären Erzen aus der südlichen Toskana sind im Vergleich mit dem apuanischen Erzblei radiogener. Sie weisen aber dieselben hohen μ- und W-Werte auf. Das heißt, das Blei stammt aus Gesteinen, die eine qualitativ wie auch quantitativ ähnliche Entwicklung bezüglich der U/Pb und Th/Pb Verhältnisse durchlaufen haben wie jene, die das Blei der apuanischen Lagerstätten geliefert haben.


European Journal of Mineralogy | 2000

Environmental mineralogy and geochemistry of waste dumps at the Pb(Zn)-Ag Bottino mine, Apuane Alps, Italy

Marco Benvenuti; I. Mascaro; F. Corsini; Massimo Ferrari; Pierfranco Lattanzi; Pierluigi Parrini; P. Costagliola; G. Tanelli

The Bottino mine (Apuane Alps, Tuscany) had been exploited for silver and lead since at least Renaissance times. Detailed field work has led to the recognition of several mine dumps which differ in size, age, and types (rock waste dumps; jigging and handpicking wastes). In the dumps, the primary sulfides are sphalerite, galena, and pyrite ± variable amounts of chalcopyrite, pyrrhotite, arsenopyrite, and a wealth of other sulfides and sulfosalts. These mine- rals are associated with gangue quartz, white micas, chlorite, and carbonates, mostly of the siderite-magnesite and dolomite-ankerite series, whereas calcite is scarce. Supergene alteration led to the development of secondary mine- rals such as goethite, lepidocrocite, pyrolusite, cerussite, and clay minerals (kaolinite, montmorillonite, and vermi- culite). Two main types of supergene effects have been observed: (a) development in situ of pseudomorphic replacement of primary minerals, and (b) leaching and dissolution. Acid generation and metal release are mainly pro- duced by the replacement of pyrrhotite by iron hydroxides, the partial dissolution of siderite-magnesite carbonates, and the extensive dissolution/replacement of galena and sphalerite. Given the scarcity of calcite in the primary assem- blage, the most effective attenuators of acidity seem to have been dolomite-ankerite and siderite-magnesite. The mainly unpolluted character of the Bottino waters may be explained by a number of concurring factors, including the moderate volume of wastes, their overall coarse grain size, the low abundance of acid-producing phases (pyrite and pyrrhotite) relative to acid-consuming phases such as dolomite-ankerite, and the steep topography.


Environmental Science & Technology | 2013

Arsenic-bearing calcite in natural travertines: evidence from sequential extraction, μXAS, and μXRF.

P. Costagliola; Fabrizio Bardelli; Marco Benvenuti; Di Benedetto F; Pierfranco Lattanzi; Maurizio Romanelli; Mario Paolieri; Rimondi; Vaggelli G

Recent studies demonstrated that synthetic calcite may host considerable amounts of arsenic (As). In this paper, the concentration of As in natural calcite was determined using two novel, specifically designed, sequential extraction procedures. In addition, the oxidation state of As and its distribution between calcite and coexisting Fe-oxyhydroxides was unravelled by μXRF elemental mapping and As K-edge μXAS spectroscopy. Our results conclusively demonstrate that arsenic can be found in natural calcite up to 2 orders of magnitude over the normal crustal As abundances. Because of the large diffusion of calcite in the environment, this phase may exert an important control on As geochemistry, mobility, and bioavailability.


Journal of Cultural Heritage | 2000

Mineralogical and chemical characterisation of the Medicean glass mosaic tesserae and mortars of the Grotta del Buontalenti, Giardino di Boboli, Florence, Italy

P. Costagliola; G Baldi; C Cipriani; Elena Pecchioni; A Buccianti

Abstract The Grotta of Buontalenti (GB) was built at the end of the 1500s during the Medicean period. One of the rooms that constitutes the Grotta is decorated with mosaics composed of tesserae of stained glass. The GB underwent several restorations, which took place between the end of the 1700s and 1980s, which are poorly described and documented, leading to some uncertainties about the extent and phase(s) of restorations of the mosaics. The original tesserae and mortars of the GB were analysed for their mineralogical and chemical composition. Results indicate that glass tesserae have a common sodic base composition. Cluster analyses, however, performed considering the glass base composition (i.e. SiO 2 , K 2 O, Na 2 O, MgO, CaO, and Al 2 O 3 ), identify three groups of samples: A, B, and C. A and B are characterised by chromophores such as Se and Cr suggesting a recent age (50–150 years) of the tesserae. On the contrary, chromophores (Fe, Mn, Cu, Co) and opacifiers (mainly SnO 2 , Pb 2 Sb 2 O 7 , Ca 2 Sb 2 O 7 ) of the third group (C) indicate a preparation procedure known since ancient times. Based on their mineralogy and petrography, four different types of mortars were recognised. The mortars cannot be precisely dated. However, by matching their composition with that of the glass tesserae, it can be concluded that one type of mortar may be of the Medicean period, whereas the others are relatively recent, probably of this century. This evidence, in accordance with historical data, points to a Medicean age of group C tesserae. Restorations of the GB involved partial substitution of the mortars whereas the glass tesserae were largely recycled with limited addition of new materials.


Bollettino Della Societa Geologica Italiana | 2015

Metallogeny, exploitation and environmental impact of the Mt. Amiata mercury ore district (Southern Tuscany, Italy)

Valentina Rimondi; Laura Chiarantini; Pierfranco Lattanzi; Marco Benvenuti; Marc W. Beutel; Antonella Colica; P. Costagliola; Francesco Di Benedetto; Giuliano Gabbani; John E. Gray; Enrico Pandeli; Giulia Pattelli; Mario Paolieri; Giovanni Ruggieri

The Mt. Amiata mining district (Southern Tuscany, Italy) is a world class Hg district, with a cumulate production of more than 100,000 tonnes of Hg, mostly occurring between 1870 and 1980. The Hg mineralization at Mt. Amiata is younger than 0.3 Ma, and is directly related to shallow hydrothermal systems similar to presentday geothermal fields of the region. There is likely a continuum of Hg deposition to present day, because Hg emission from geothermal power plants is on-going. In this sense, the Mt. Amiata deposits present some analogies with hot-spring type deposits of western USA, although an ore deposit model for the district has not been established. Specifically, the source of Hg remains highly speculative. The mineralizing hydrothermal fluids are of low temperature, and of essentially meteoric origin. Recent results by our research group indicate that, 30 years after mine closure, the environmental effects of Hg contamination related to mining are still recorded by the ecosystem, namely on waterways of the Paglia and Tiber River basins. In particular, the close spatial connection between the town of Abbadia San Salvatore, the Hg mine within its immediate neighborhood, and the drainage catchment of the Paglia River has an influence also on Hg speciation, transported mainly in the particulate form by the river system. The extent of Hg contamination has been identified at least 100 km from Abbadia San Salvatore along the Paglia-Tiber River system. Estimated annual Hg mass loads transported by the Paglia River to the Tiber River were about 11 kg yr-1. However, there is evidence that flood events may enhance Hg mobilization in the Paglia River basin, increasing Hg concentrations in stream sediment. The high methyl-Hg/Hg ratio in water in this area is an additional factor of great concern due to the potential harmful effects on human and wildlife health. Results of our studies indicate that the Mt. Amiata region is at present a source of Hg of remarkable environmental concern at the local, regional (Tiber River), and Mediterranean scales. Ongoing studies are aimed to a more detailed quantification of the Hg mass load input to the Mediterranean Sea, and to unravel the processes concerning Hg transport and fluid dynamics.


European Journal of Mineralogy | 2001

Pb-isotope signatures of Italian alabasters: possible application to provenance studies of works of art

P. Costagliola; Marco Benvenuti; F. Corsini; Cinzia Maineri; I. Mascaro

Gypsum alabaster is being used to realise works of art since ancient times. In Italy, a number of quarries exploiting Messinian outcrops (in particular in Sicily and Tuscany) are known since the Etruscan period, and the Opificio delle Pietre Dure of Firenze posed the question to geochemically characterise these in order to recognise the provenance area of raw materials. In this paper, a discrimination was attempted using Pb isotopes because of 1) the low residence time of this element in seawater, and 2) the supposed interaction between Tuscan alabasters and hydrothermal fluids of known Pb-isotope composition. Textures indicate that de- and re-hydration reactions after deposition actually affected alabaster involving fluids circulation. Pb-isotope data are scattered ( 206 Pb/ 204 Pb = 17.88-18.71, 208 Pb/ 204 Pb = 38.01-38.86, 207 Pb/ 204 Pb = 15.58-15.76) suggesting that: 1) fluids did not drive any compositional homogenisation; 2) the isotopic signature is inherited from the evaporitic sedimentary environment and reflects a complex hydrology of the Messinian evaporitic basins; 3) Pb isotopes are an unreliable marker because of the compositional overlap between Tuscan and Sicilian samples. However, at odds with the general trend of their large scattering, the collected data suggest a relative homogeneity at the local scale.


Environmental Pollution | 2017

Mercury speciation in Pinus nigra barks from Monte Amiata (Italy): An X-ray absorption spectroscopy study ☆

Laura Chiarantini; Valentina Rimondi; Fabrizio Bardelli; Marco Benvenuti; Claudia Cosio; P. Costagliola; Francesco Di Benedetto; Pierfranco Lattanzi; Géraldine Sarret

This study determined, by means of X-ray absorption near-edge structure (XANES) spectroscopy, the speciation of mercury (Hg) in black pine (Pinus nigra) barks from Monte Amiata, that were previously shown to contain exceptionally high (up to some mg kg-1) Hg contents because of the proximity to the former Hg mines and roasting plants. Linear fit combination (LCF) analysis of the experimental spectra compared to a large set of reference compounds showed that all spectra can be fitted by only four species: β-HgS (metacinnabar), Hg-cysteine, Hg bound to tannic acid, and Hg0. The first two are more widespread, whereas the last two occur in one sample only; the contribution of organic species is higher in deeper layers of barks than in the outermost ones. We interpret these results to suggest that, during interaction of barks with airborne Hg, the metal is initially mechanically captured at the bark surface as particulate, or physically adsorbed as gaseous species, but eventually a stable chemical bond is established with organic ligands of the substrate. As a consequence, we suggest that deep bark Hg may be a good proxy for long term time-integrated exposure, while surface bark Hg is more important for recording short term events near Hg point sources.

Collaboration


Dive into the P. Costagliola's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. Tanelli

University of Florence

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

I. Mascaro

University of Florence

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Dini

National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge