Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where P. Ennever is active.

Publication


Featured researches published by P. Ennever.


Nuclear Fusion | 2011

Observations of core toroidal rotation reversals in Alcator C-Mod ohmic L-mode plasmas

J. E. Rice; B.P. Duval; M.L. Reinke; Y. Podpaly; A. Bortolon; R.M. Churchill; I. Cziegler; P. H. Diamond; A. Dominguez; P. Ennever; C. Fiore; R. Granetz; M. Greenwald; A. Hubbard; J.W. Hughes; James H. Irby; Y. Ma; E. Marmar; R. M. McDermott; M. Porkolab; N. Tsujii; S.M. Wolfe

Direction reversals of intrinsic toroidal rotation have been observed in Alcator C-Mod ohmic L-mode plasmas following modest electron density or toroidal magnetic field ramps. The reversal process occurs in the plasma interior, inside of the q = 3/2 surface. For low density plasmas, the rotation is in the co-current direction, and can reverse to the counter-current direction following an increase in the electron density above a certain threshold. Reversals from the co- to counter-current direction are correlated with a sharp decrease in density fluctuations with k(R) >= 2 cm(-1) and with frequencies above 70 kHz. The density at which the rotation reverses increases linearly with plasma current, and decreases with increasing magnetic field. There is a strong correlation between the reversal density and the density at which the global ohmic L-mode energy confinement changes from the linear to the saturated regime.


Physics of Plasmas | 2012

Ohmic energy confinement saturation and core toroidal rotation reversal in Alcator C-Mod plasmas

J. E. Rice; M. Greenwald; Y. Podpaly; M.L. Reinke; P. H. Diamond; J.W. Hughes; N.T. Howard; Y. Ma; I. Cziegler; B.P. Duval; P. Ennever; D. Ernst; C. Fiore; C. Gao; J. Irby; E. Marmar; M. Porkolab; N. Tsujii; S. M. Wolfe

Ohmic energy confinement saturation is found to be closely related to core toroidal rotation reversals in Alcator C-Mod tokamak plasmas. Rotation reversals occur at a critical density, depending on the plasma current and toroidal magnetic field, which coincides with the density separating the linear Ohmic confinement regime from the saturated Ohmic confinement regime. The rotation is directed co-current at low density and abruptly changes direction to counter-current when the energy confinement saturates as the density is increased. Since there is a bifurcation in the direction of the rotation at this critical density, toroidal rotation reversal is a very sensitive indicator in the determination of the regime change. The reversal and confinement saturation results can be unified, since these processes occur in a particular range of the collisionality.


Nuclear Fusion | 2013

Non-local heat transport, rotation reversals and up/down impurity density asymmetries in Alcator C-Mod ohmic L-mode plasmas

J. E. Rice; C. Gao; M.L. Reinke; P. H. Diamond; N.T. Howard; H.J. Sun; I. Cziegler; A. Hubbard; Y. Podpaly; William L. Rowan; J. L. Terry; M. Chilenski; L. Delgado-Aparicio; P. Ennever; D. Ernst; M. Greenwald; J.W. Hughes; Y. Ma; E. Marmar; M. Porkolab; A.E. White; S.M. Wolfe

Several seemingly unrelated effects in Alcator C-Mod ohmic L-mode plasmas are shown to be closely connected: non-local heat transport, core toroidal rotation reversals, energy confinement saturation and up/down impurity density asymmetries. These phenomena all abruptly transform at a critical value of the collisionality. At low densities in the linear ohmic confinement regime, with collisionality ?*???0.35 (evaluated inside of the q?=?3/2 surface), heat transport exhibits non-local behaviour, core toroidal rotation is directed co-current, edge impurity density profiles are up/down symmetric and a turbulent feature in core density fluctuations with k? up to 15?cm?1 (k??s???1) is present. At high density/collisionality with saturated ohmic confinement, electron thermal transport is diffusive, core rotation is in the counter-current direction, edge impurity density profiles are up/down asymmetric and the high k? turbulent feature is absent. The rotation reversal stagnation point (just inside of the q?=?3/2 surface) coincides with the non-local electron temperature profile inversion radius. All of these observations suggest a possible unification in a model with trapped electron mode prevalence at low collisionality and ion temperature gradient mode domination at high collisionality.


Physics of Plasmas | 2014

20 years of research on the Alcator C-Mod tokamak

M. Greenwald; A. Bader; S. G. Baek; M. Bakhtiari; Harold Barnard; W. Beck; W. Bergerson; I.O. Bespamyatnov; P.T. Bonoli; D. L. Brower; D. Brunner; W. Burke; J. Candy; M. Churchill; I. Cziegler; A. Diallo; A. Dominguez; B.P. Duval; E. Edlund; P. Ennever; D. Ernst; I. Faust; C. Fiore; T. Fredian; O.E. Garcia; C. Gao; J.A. Goetz; T. Golfinopoulos; R. Granetz; O. Grulke

The object of this review is to summarize the achievements of research on the Alcator C-Mod tokamak [Hutchinson et al., Phys. Plasmas 1, 1511 (1994) and Marmar, Fusion Sci. Technol. 51, 261 (2007)] and to place that research in the context of the quest for practical fusion energy. C-Mod is a compact, high-field tokamak, whose unique design and operating parameters have produced a wealth of new and important results since it began operation in 1993, contributing data that extends tests of critical physical models into new parameter ranges and into new regimes. Using only high-power radio frequency (RF) waves for heating and current drive with innovative launching structures, C-Mod operates routinely at reactor level power densities and achieves plasma pressures higher than any other toroidal confinement device. C-Mod spearheaded the development of the vertical-target divertor and has always operated with high-Z metal plasma facing components—approaches subsequently adopted for ITER. C-Mod has made ground-breaking discoveries in divertor physics and plasma-material interactions at reactor-like power and particle fluxes and elucidated the critical role of cross-field transport in divertor operation, edge flows and the tokamak density limit. C-Mod developed the I-mode and the Enhanced Dα H-mode regimes, which have high performance without large edge localized modes and with pedestal transport self-regulated by short-wavelength electromagnetic waves. C-Mod has carried out pioneering studies of intrinsic rotation and demonstrated that self-generated flow shear can be strong enough in some cases to significantly modify transport. C-Mod made the first quantitative link between the pedestal temperature and the H-modes performance, showing that the observed self-similar temperature profiles were consistent with critical-gradient-length theories and followed up with quantitative tests of nonlinear gyrokinetic models. RF research highlights include direct experimental observation of ion cyclotron range of frequency (ICRF) mode-conversion, ICRF flow drive, demonstration of lower-hybrid current drive at ITER-like densities and fields and, using a set of novel diagnostics, extensive validation of advanced RF codes. Disruption studies on C-Mod provided the first observation of non-axisymmetric halo currents and non-axisymmetric radiation in mitigated disruptions. A summary of important achievements and discoveries are included.


Nuclear Fusion | 2013

Changes in core electron temperature fluctuations across the ohmic energy confinement transition in Alcator C-Mod plasmas

C. Sung; A.E. White; N.T. Howard; C.Y. Oi; J. E. Rice; C. Gao; P. Ennever; M. Porkolab; Felix I. Parra; D.R. Mikkelsen; D. Ernst; J. Walk; J.W. Hughes; James H. Irby; C. Kasten; A. Hubbard; M. Greenwald

The first measurements of long wavelength (ky?s?<?0.3) electron temperature fluctuations in Alcator C-Mod made with a new correlation electron cyclotron emission diagnostic support a long-standing hypothesis regarding the confinement transition from linear ohmic confinement (LOC) to saturated ohmic confinement (SOC). Electron temperature fluctuations decrease significantly (?40%) crossing from LOC to SOC, consistent with a change from trapped electron mode (TEM) turbulence domination to ion temperature gradient (ITG) turbulence as the density is increased. Linear stability analysis performed with the GYRO code (Candy and Waltz 2003 J. Comput. Phys. 186 545) shows that TEMs are dominant for long wavelength turbulence in the LOC regime and ITG modes are dominant in the SOC regime at the radial location (????0.8) where the changes in electron temperature fluctuations are measured. In contrast, deeper in the core (??<?0.8), linear stability analysis indicates that ITG modes remain dominant across the LOC/SOC transition. This radial variation suggests that the robust global changes in confinement of energy and momentum occurring across the LOC/SOC transition are correlated to local changes in the dominant turbulent mode near the edge.


Physics of Plasmas | 2015

Poloidal asymmetries in edge transport barriersa)

R. M. Churchill; C. Theiler; B. Lipschultz; Ian H. Hutchinson; M.L. Reinke; D.G. Whyte; J.W. Hughes; P. Catto; M. Landreman; D. Ernst; C. S. Chang; R. Hager; A. Hubbard; P. Ennever; J. Walk; Alcator C-Mod Team

Measurements of impurities in Alcator C-Mod indicate that in the pedestal region, significant poloidal asymmetries can exist in the impurity density, ion temperature, and main ion density. In light of the observation that ion temperature and electrostatic potential are not constant on a flux surface [Theiler et al., Nucl. Fusion 54, 083017 (2014)], a technique based on total pressure conservation to align profiles measured at separate poloidal locations is presented and applied. Gyrokinetic neoclassical simulations with XGCa support the observed large poloidal variations in ion temperature and density, and that the total pressure is approximately constant on a flux surface. With the updated alignment technique, the observed in-out asymmetry in impurity density is reduced from previous publishing [Churchill et al., Nucl. Fusion 53, 122002 (2013)], but remains substantial ( nz,H/nz,L∼6). Candidate asymmetry drivers are explored, showing that neither non-uniform impurity sources nor localized fluctuation-dri...


Nuclear Fusion | 2015

Alcator C-Mod: research in support of ITER and steps beyond

E. Marmar; S. G. Baek; Harold Barnard; P.T. Bonoli; D. Brunner; J. Candy; John M. Canik; R.M. Churchill; I. Cziegler; G. Dekow; L. Delgado-Aparicio; A. Diallo; E.M. Edlund; P. Ennever; I. Faust; C. Fiore; C. Gao; T. Golfinopoulos; M. Greenwald; Z.S. Hartwig; C. Holland; Amanda E. Hubbard; J.W. Hughes; Ian H. Hutchinson; James H. Irby; B. LaBombard; Yijun Lin; B. Lipschultz; A. Loarte; R. Mumgaard

This paper presents an overview of recent highlights from research on Alcator C-Mod. Significant progress has been made across all research areas over the last two years, with particular emphasis on divertor physics and power handling, plasmamaterial interaction studies, edge localized mode-suppressed pedestal dynamics, core transport and turbulence, and RF heating and current drive utilizing ion cyclotron and lower hybrid tools. Specific results of particular relevance to ITER include: inner wall SOL transport studies that have led, together with results from other experiments, to the change of the detailed shape of the inner wall in ITER; runaway electron studies showing that the critical electric field required for runaway generation is much higher than predicted from collisional theory; core tungsten impurity transport studies reveal that tungsten accumulation is naturally avoided in typical C-Mod conditions.


Plasma Physics and Controlled Fusion | 2013

Density sensitivity of intrinsic rotation profiles in ion cyclotron range of frequency-heated L-mode plasmas

Matthew Reinke; J. E. Rice; A.E. White; M. Greenwald; N.T. Howard; P. Ennever; C. Gao; A. Hubbard; J.W. Hughes

The physical mechanisms that cause tokamak plasmas to rotate toroidally without external momentum input are of considerable interest to the plasma physics community. This paper documents a substantial change in both the magnitude of the core-rotation frequency, ?1?<??(r/a?=?0)?<?+10?kHz, and the sign of rotation shear at mid-radius, u??=??R2?d?/dr/vth,i, which varies in the range ?0.6?<?u??<?+0.8 in response to very small changes in the electron density. In 0.8?MA, 5.4?T Alcator C-Mod L-mode plasmas using 1.2?MW of on-axis ion-cyclotron resonance heating, plasmas with line-averaged densities in the range exhibit a transition from a peaked intrinsic rotation profile to one that is hollow. Gradient scale lengths of the temperature and density profiles, the drive for plasma turbulence thought to play a role in intrinsic rotation, are indistinguishable within experimental uncertainties between the plasmas, and linear stability analysis using GYRO shows the plasmas to be in the ion temperature gradient-dominated turbulence regime. The impact of changes in the rotation profile in response to minor changes under target plasma conditions is discussed in relation to established analysis techniques and cross-machine rotation scaling studies, with comparisons made with existing ASDEX-Upgrade work on intrinsic rotation shear.


Physics of Plasmas | 2015

The effects of dilution on turbulence and transport in C-Mod ohmic plasmas and comparisons with gyrokinetic simulations

P. Ennever; Miklos Porkolab; J. Candy; G. M. Staebler; Matthew Reinke; J. E. Rice; J. C. Rost; D. Ernst; C. Fiore; J.W. Hughes; J. L. Terry; Alcator C-Mod Team

Main ion dilution has been predicted by gyrokinetic simulations to have a significant effect on ion thermal transport in C-Mod ohmic plasmas. This effect was verified experimentally with a specific set of experiments on C-Mod in which ohmic deuterium plasmas across the linear ohmic confinement (LOC) through the saturated ohmic confinement (SOC) regimes were diluted by seeding with nitrogen gas (Z = 7) injection. The seeding was observed to increase the normalized ion temperature gradients (ITGs) by up to 30% without a corresponding increase in the gyrobohm normalized ion energy flux, indicating a change in either the stiffness or the critical ion temperature gradient associated with ITG turbulence. The seeding also reversed the direction of the intrinsic toroidal rotation in plasmas slightly above the normal intrinsic rotation reversal critical density. GYRO simulations of the seeded and unseeded plasmas show that the seeding affected both the critical gradient and the stiffness. For plasmas in the LOC re...


Physics of Plasmas | 2015

Validation of full-wave simulations for mode conversion of waves in the ion cyclotron range of frequencies with phase contrast imaging in Alcator C-Mod

N. Tsujii; Miklos Porkolab; P.T. Bonoli; E. Edlund; P. Ennever; Y. Lin; John Wright; S.J. Wukitch; E. F. Jaeger; D.L. Green; R. W. Harvey

Mode conversion of fast waves in the ion cyclotron range of frequencies (ICRF) is known to result in current drive and flow drive under optimised conditions, which may be utilized to control plasma profiles and improve fusion plasma performance. To describe these processes accurately in a realistic toroidal geometry, numerical simulations are essential. Quantitative comparison of these simulations and the actual experimental measurements is important to validate their predictions and to evaluate their limitations. The phase contrast imaging (PCI) diagnostic has been used to directly detect the ICRF waves in the Alcator C-Mod tokamak. The measurements have been compared with full-wave simulations through a synthetic diagnostic technique. Recently, the frequency response of the PCI detector array on Alcator C-Mod was recalibrated, which greatly improved the comparison between the measurements and the simulations. In this study, mode converted waves for D-3He and D-H plasmas with various ion species composit...

Collaboration


Dive into the P. Ennever's collaboration.

Top Co-Authors

Avatar

J. E. Rice

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

J.W. Hughes

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

A. Hubbard

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

M. Greenwald

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

M. Porkolab

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

D. Ernst

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

C. Fiore

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Miklos Porkolab

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

C. Gao

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Matthew Reinke

Oak Ridge National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge