Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where P.J. Willems is active.

Publication


Featured researches published by P.J. Willems.


Journal of Medical Genetics | 2002

Identification of a 52 kb deletion downstream of the SOST gene in patients with van Buchem disease

W Balemans; Neela Patel; M Ebeling; E Van Hul; Wim Wuyts; C Lacza; M Dioszegi; Frederik G. Dikkers; P Hildering; P.J. Willems; Jbgm Verheij; Klaus Lindpaintner; Brian Henry Vickery; Dorothee Foernzler; W. Van Hul

Van Buchem disease is an autosomal recessive skeletal dysplasia characterised by generalised bone overgrowth, predominantly in the skull and mandible. Clinical complications including facial nerve palsy, optic atrophy, and impaired hearing occur in most patients. These features are very similar to those of sclerosteosis and the two conditions are only differentiated by the hand malformations and the tall stature appearing in sclerosteosis. Using an extended Dutch inbred van Buchem family and two inbred sclerosteosis families, we mapped both disease genes to the same region on chromosome 17q12-q21, supporting the hypothesis that van Buchem disease and sclerosteosis are caused by mutations in the same gene. In a previous study, we positionally cloned a novel gene, called SOST, from the linkage interval and identified three different, homozygous mutations in the SOST gene in sclerosteosis patients leading to loss of function of the underlying protein. The present study focuses on the identification of a 52 kb deletion in all patients from the van Buchem family. The deletion, which results from a homologous recombination between Alu sequences, starts approximately 35 kb downstream of the SOST gene. Since no evidence was found for the presence of a gene within the deleted region, we hypothesise that the presence of the deletion leads to a down regulation of the transcription of the SOST gene by a cis regulatory action or a position effect.


Neuroscience | 1997

Mildly impaired water maze performance in male Fmr1 knockout mice

Rudi D'Hooge; Guy Nagels; F. Franck; Cathy E. Bakker; Edwin Reyniers; Katrien Storm; R.F. Kooy; Ben A. Oostra; P.J. Willems; P.P. De Deyn

Fmr1 knockout mice constitute a putative model of fragile X syndrome, the most common form of heritable mental disability in humans. We have compared the performance of transgenic mice with an Fmr1 knockout with that of normal littermates in hidden- and visible-platform water maze learning, and showed that knockouts exhibit subnormal spatial learning abilities and marginal motor performance deficits. During 12 training trials of the hidden-platform task, escape latency and path length decreased significantly in knockouts and control littermates, and no effect of genotype was found. During four ensuing reversal trials, however, significant differences were found between knockouts and control littermates both in escape latency and path length. During the visible-platform condition, the reversal trials also revealed a difference between knockouts and normal littermates in escape latency, but not in path length. Possibly due to marginal motor incapacity, knockouts swam significantly slower than controls during these latter trials. During both probe trials of the hidden-platform task, knockouts as well as normal littermates spent more time in the target quadrant than in the other quadrants, and percent of time spent in the target quadrant was the same in both groups; swimming velocity was not significantly different between knockouts and normal littermates during these trials. Entries in the target area during the probe trials did show a significant effect of genotype on number of entries. The present results largely confirm and extend our previous findings. Impaired spatial abilities in Fmr1 knockouts might have been due to relatively low response flexibility or high memory interference in Fmr1 knockouts. It remains unclear, however, which brain region or neurochemical system might be involved in these disabilities. We conclude that Fmr1 knockout mice might be a valid model of fragile X mental retardation.


American Journal of Medical Genetics | 1996

Long-term potentiation in the hippocampus of fragile X knockout mice.

Jean-Marie Godfraind; Edwin Reyniers; K. De Boulle; Rudi D'Hooge; P.P. De Deyn; Cathy E. Bakker; Ben A. Oostra; R.F. Kooy; P.J. Willems

To gain more insight in the physiological function of the fragile X gene (FMR1) and the mechanisms leading to fragile X syndrome, the Fmr1 gene has been inactivated in mice by gene targeting techniques. In the Morris water maze test, the Fmr1 knockout mice learn to find the hidden platform nearly as well as the control animals, but show impaired performance after the position of the platform has been modified. As malperformance in the Morris water maze test has been associated with impaired long-term potentiation (LTP), electrophysiological studies were performed in hippocampal slices of Fmr1 knockout mice to check for the presence of LTP. Judged by field extracellular excitatory postsynaptic potential recordings in the CA1 hippocampal area, Fmr1 knockout mice express LTP to a similar extent as their wild type littermates during the first 1-2 hr after high frequency stimulation. Also, short-term potentiation (STP) was similar in both types of mice. To investigate whether Fmr1 is involved in the latter stages of LTP as an immediate early gene, we compared Fmr1 mRNA quantities on northern blots after chemical induction of seizures. A transient increase in the transcription of immediate early genes is thought to be essential for the maintenance of LTP. As no increase in Fmr1 mRNA could be detected, neither in cortex nor in total brain, during the first 2 1/2 hr after pentylenetetrazol-induced seizures, it is unlikely that Fmr1 is an immediate early gene in mice. In conclusion, we found no evidence for a function of FMR1 in STP or LTP.


American Journal of Human Genetics | 1998

Mutations in the EXT1 and EXT2 Genes in Hereditary Multiple Exostoses

Wim Wuyts; W. Van Hul; K. De Boulle; Jan Hendrickx; E. Bakker; Filip Vanhoenacker; F. Mollica; Hermann-Josef Lüdecke; B.S. Sayli; U.E. Pazzaglia; Geert Mortier; B.C.J. Hamel; E.U. Conrad; Mark Matsushita; Wendy H. Raskind; P.J. Willems

Hereditary multiple exostoses (EXT; MIM 133700) is an autosomal dominant bone disorder characterized by the presence of multiple benign cartilage-capped tumors (exostoses). Besides suffering complications caused by the pressure of these exostoses on the surrounding tissues, EXT patients are at an increased risk for malignant chondrosarcoma, which may develop from an exostosis. EXT is genetically heterogeneous, and three loci have been identified so far: EXT1, on chromosome 8q23-q24; EXT2, on 11p11-p12; and EXT3, on the short arm of chromosome 19. The EXT1 and EXT2 genes were cloned recently, and they were shown to be homologous. We have now analyzed the EXT1 and EXT2 genes, in 26 EXT families originating from nine countries, to identify the underlying disease-causing mutation. Of the 26 families, 10 families had an EXT1 mutation, and 10 had an EXT2 mutation. Twelve of these mutations have never been described before. In addition, we have reviewed all EXT1 and EXT2 mutations reported so far, to determine the nature, frequency, and distribution of mutations that cause EXT. From this analysis, we conclude that mutations in either the EXT1 or the EXT2 gene are responsible for the majority of EXT cases. Most of the mutations in EXT1 and EXT2 cause premature termination of the EXT proteins, whereas missense mutations are rare. The development is thus mainly due to loss of function of the EXT genes, consistent with the hypothesis that the EXT genes have a tumor- suppressor function.


American Journal of Human Genetics | 1998

Sporadic Imprinting Defects in Prader-Willi Syndrome and Angelman Syndrome: Implications for Imprint-Switch Models, Genetic Counseling, and Prenatal Diagnosis

Karin Buiting; Bärbel Dittrich; S. Gross; Christina Lich; C. Färber; Tina Buchholz; E. Smith; André Reis; Joachim Bürger; Markus M. Nöthen; U. Barth-Witte; Bart Janssen; D. Abeliovich; I. Lerer; A. van den Ouweland; D. J. J. Halley; Connie Schrander-Stumpel; H.J.M. Smeets; Peter Meinecke; Sue Malcolm; A. Gardner; Marc Lalande; Robert D. Nicholls; Kathryn Friend; Andreas Schulze; Gert Matthijs; Hannaleena Kokkonen; P Hilbert; L. Van Maldergem; G. Glover

The Prader-Willi syndrome (PWS) and the Angelman syndrome (AS) are caused by the loss of function of imprinted genes in proximal 15q. In approximately 2%-4% of patients, this loss of function is due to an imprinting defect. In some cases, the imprinting defect is the result of a parental imprint-switch failure caused by a microdeletion of the imprinting center (IC). Here we describe the molecular analysis of 13 PWS patients and 17 AS patients who have an imprinting defect but no IC deletion. Heteroduplex and partial sequence analysis did not reveal any point mutations of the known IC elements, either. Interestingly, all of these patients represent sporadic cases, and some share the paternal (PWS) or the maternal (AS) 15q11-q13 haplotype with an unaffected sib. In each of five PWS patients informative for the grandparental origin of the incorrectly imprinted chromosome region and four cases described elsewhere, the maternally imprinted paternal chromosome region was inherited from the paternal grandmother. This suggests that the grandmaternal imprint was not erased in the fathers germ line. In seven informative AS patients reported here and in three previously reported patients, the paternally imprinted maternal chromosome region was inherited from either the maternal grandfather or the maternal grandmother. The latter finding is not compatible with an imprint-switch failure, but it suggests that a paternal imprint developed either in the maternal germ line or postzygotically. We conclude (1) that the incorrect imprint in non-IC-deletion cases is the result of a spontaneous prezygotic or postzygotic error, (2) that these cases have a low recurrence risk, and (3) that the paternal imprint may be the default imprint.


Journal of Medical Genetics | 1998

Genotype-phenotype correlation in L1 associated diseases.

Erik Fransen; G. Van Camp; Rudi D'Hooge; Lieve Vits; P.J. Willems

The neural cell adhesion molecule L1 (L1CAM) plays a key role during embryonic development of the nervous system and is involved in memory and learning. Mutations in the L1 gene are responsible for four X linked neurological conditions: X linked hydrocephalus (HSAS), MASA syndrome, complicated spastic paraplegia type 1 (SP-1), and X linked agenesis of the corpus callosum. As the clinical picture of these four L1 associated diseases shows considerable overlap and is characterised by Corpus callosum hypoplasia, mental Retardation, Adducted thumbs, Spastic paraplegia, and Hydrocephalus, these conditions have recently been lumped together into the CRASH syndrome. We investigate here whether a genotype-phenotype correlation exists in CRASH syndrome since its clinical spectrum is highly variable and numerous L1 mutations have been described. We found that (1) mutations in the extracellular part of L1 leading to truncation or absence of L1 cause a severe phenotype, (2) mutations in the cytoplasmic domain of L1 give rise to a milder phenotype than extracellular mutations, and (3) extracellular missense mutations affecting amino acids situated on the surface of a domain cause a milder phenotype than those affecting amino acids buried in the core of the domain.


Acta Neuropathologica | 1994

On an autosomal dominant form of retinal-cerebellar degeneration: an autopsy study of five patients in one family.

Jj. Martin; N. Vanregemorter; L. Krols; Jean-Marie Brucher; Thierry de Barsy; Henri Szliwowski; Philippe Evrard; Chantal Ceuterick; Mj Tassignon; H. Smetdieleman; F. Hayezdelatte; P.J. Willems; C. Vanbroeckhoven

We describe a family with an autosomal dominant form of retinal-cerebellar atrophy. There is an extreme variability in age of onset and severity of the clinical symptoms: some patients remain nearly asymptomatic throughout their entire life; others develop severe retinal and cerebellar symptoms after the age of 35 years; others suffer from a severe disorder with onset in adolescence and death during the third decade of life; in others the onset is in early childhood with prevalence of cerebellar symptoms. There is neither dementia nor epilepsy in any of the patients. Four out of five autopsies showed a severe retinal atrophy, and all five autopsies were also characterized by (1) a cerebellar atrophy affecting the spinocerebellar and olivocerebellar tracts, the cerebellar cortex and the efferent cerebellar pathways, (2) an involvement of the pyramidal pathways and of the motor neurons of brain stem and spinal cord, and (3) an atrophy of the subthalamic nucleus and to a much lesser extent of the pallidum, with also some damage to the substantia nigra. The posterior columns are much less affected except in one patient. In this family, we have excluded linkage with the two loci for spinocerebellar ataxia, i.e., SCA1 on chromosome 6p and SCA2 on chromosome 12q as well as with the locus for Machado-Joseph disease (MJD) on chromosome 14q. A genome-wide search is currently being performed to detect the disease locus responsible.


Journal of Medical Genetics | 2005

The phenotypic spectrum in patients with arginine to cysteine mutations in the COL2A1 gene

K P Hoornaert; C Dewinter; I Vereecke; Frits A. Beemer; Winnie Courtens; A Fryer; H Fryssira; Melissa Lees; A Müllner-Eidenböck; David L. Rimoin; L Siderius; Andrea Superti-Furga; K Temple; P.J. Willems; Andreas Zankl; C Zweier; A. De Paepe; P Coucke; Geert Mortier

Background: The majority of COL2A1 missense mutations are substitutions of obligatory glycine residues in the triple helical domain. Only a few non-glycine missense mutations have been reported and among these, the arginine to cysteine substitutions predominate. Objective: To investigate in more detail the phenotype resulting from arginine to cysteine mutations in the COL2A1 gene. Methods: The clinical and radiographic phenotype of all patients in whom an arginine to cysteine mutation in the COL2A1 gene was identified in our laboratory, was studied and correlated with the abnormal genotype. The COL2A1 genotyping involved DHPLC analysis with subsequent sequencing of the abnormal fragments. Results: Six different mutations (R75C, R365C, R519C, R704C, R789C, R1076C) were found in 11 unrelated probands. Each mutation resulted in a rather constant and site-specific phenotype, but a perinatally lethal disorder was never observed. Spondyloarthropathy with normal stature and no ocular involvement were features of patients with the R75C, R519C, or R1076C mutation. Short third and/or fourth toes was a distinguishing feature of the R75C mutation and brachydactyly with enlarged finger joints a key feature of the R1076C substitution. Stickler dysplasia with brachydactyly was observed in patients with the R704C mutation. The R365C and R789C mutations resulted in classic Stickler dysplasia and spondyloepiphyseal dysplasia congenita (SEDC), respectively. Conclusions: Arginine to cysteine mutations are rather infrequent COL2A1 mutations which cause a spectrum of phenotypes including classic SEDC and Stickler dysplasia, but also some unusual entities that have not yet been recognised and described as type II collagenopathies.


Journal of Medical Genetics | 2003

Homozygosity mapping of a gene for arterial tortuosity syndrome to chromosome 20q13

Paul Coucke; Marja W. Wessels; P. Van Acker; Rita Gardella; Sergio Barlati; P.J. Willems; Marina Colombi; A. De Paepe

Background: Arterial tortuosity syndrome (ATS) is an uncommon connective tissue disorder of unknown aetiology. The most prominent feature is tortuosity of the large arteries, but lengthening, stenosis, and aneurysm formation are also frequent. Methods: We performed a genomewide screen by homozygosity mapping of three consanguineous multiplex families, two from Morocco, and one from Italy, which included 11 ATS patients. The two families from Morocco may possibly have a common ancestor. Results: We mapped the ATS gene to chromosome 20q13. Recombinations within an extended haplotype of 11 microsatellite markers localised the ATS gene between markers D20S836 and D20S109, an interval of 9.5 cM. Conclusions: Cloning and completing functional and structural analysis of the ATS gene may provide new insights into the molecular mechanisms of elastogenesis.


Journal of Medical Genetics | 1999

Identification of two different mutations in the PDS gene in an inbred family with Pendred syndrome

Paul Coucke; P. van Hauwe; Lorraine A. Everett; O Demirhan; Y Kabakkaya; Nicole Dietrich; Richard J.H. Smith; E Coyle; Willie Reardon; Richard C. Trembath; P.J. Willems; Eric D. Green; G. Van Camp

Recently the gene responsible for Pendred syndrome (PDS) was isolated and several mutations in the PDS gene have been identified in Pendred patients. Here we report the occurrence of two different PDS mutations in an extended inbred Turkish family. The majority of patients in this family are homozygous for a splice site mutation (1143-2A→G) affecting the 3′ splice site consensus sequence of intron 7. However, two affected sibs with non-consanguineous parents are compound heterozygotes for the splice site mutation and a missense mutation (1558T→G), substituting an evolutionarily conserved amino acid. The latter mutation has been found previously in two Pendred families originating from The Netherlands, indicating that the 1558T→G mutation may be a common mutation.

Collaboration


Dive into the P.J. Willems's collaboration.

Top Co-Authors

Avatar

Paul Coucke

Ghent University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ben A. Oostra

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wim Wuyts

University of Antwerp

View shared research outputs
Top Co-Authors

Avatar

E Van Hul

University of Antwerp

View shared research outputs
Researchain Logo
Decentralizing Knowledge