Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where P. James Schuck is active.

Publication


Featured researches published by P. James Schuck.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals

Shiwei Wu; Gang Han; Delia J. Milliron; Shaul Aloni; Virginia Altoe; Dmitri V. Talapin; Bruce E. Cohen; P. James Schuck

The development of probes for single-molecule imaging has dramatically facilitated the study of individual molecules in cells and other complex environments. Single-molecule probes ideally exhibit good brightness, uninterrupted emission, resistance to photobleaching, and minimal spectral overlap with cellular autofluorescence. However, most single-molecule probes are imperfect in several of these aspects, and none have been shown to possess all of these characteristics. Here we show that individual lanthanide-doped upconverting nanoparticles (UCNPs)—specifically, hexagonal phase NaYF4 (β-NaYF4) nanocrystals with multiple Yb3+ and Er3+ dopants—emit bright anti-Stokes visible upconverted luminescence with exceptional photostability when excited by a 980-nm continuous wave laser. Individual UCNPs exhibit no on/off emission behavior, or “blinking,” down to the millisecond timescale, and no loss of intensity following an hour of continuous excitation. Amphiphilic polymer coatings permit the transfer of hydrophobic UCNPs into water, resulting in individual water-soluble nanoparticles with undiminished photophysical characteristics. These UCNPs are endocytosed by cells and show strong upconverted luminescence, with no measurable anti-Stokes background autofluorescence, suggesting that UCNPs are ideally suited for single-molecule imaging experiments.


Nature Nanotechnology | 2014

Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging

Daniel J. Gargas; Emory M. Chan; Alexis D. Ostrowski; Shaul Aloni; M. Virginia P. Altoe; Edward S. Barnard; Babak Sanii; Jeffrey J. Urban; Delia J. Milliron; Bruce E. Cohen; P. James Schuck

Imaging at the single-molecule level reveals heterogeneities that are lost in ensemble imaging experiments, but an ongoing challenge is the development of luminescent probes with the photostability, brightness and continuous emission necessary for single-molecule microscopy. Lanthanide-doped upconverting nanoparticles overcome problems of photostability and continuous emission and their upconverted emission can be excited with near-infrared light at powers orders of magnitude lower than those required for conventional multiphoton probes. However, the brightness of upconverting nanoparticles has been limited by open questions about energy transfer and relaxation within individual nanocrystals and unavoidable tradeoffs between brightness and size. Here, we develop upconverting nanoparticles under 10 nm in diameter that are over an order of magnitude brighter under single-particle imaging conditions than existing compositions, allowing us to visualize single upconverting nanoparticles as small (d = 4.8 nm) as fluorescent proteins. We use advanced single-particle characterization and theoretical modelling to find that surface effects become critical at diameters under 20 nm and that the fluences used in single-molecule imaging change the dominant determinants of nanocrystal brightness. These results demonstrate that factors known to increase brightness in bulk experiments lose importance at higher excitation powers and that, paradoxically, the brightest probes under single-molecule excitation are barely luminescent at the ensemble level.


ACS Nano | 2012

Controlled Synthesis and Single-Particle Imaging of Bright, Sub-10 nm Lanthanide-Doped Upconverting Nanocrystals

Alexis D. Ostrowski; Emory M. Chan; Daniel J. Gargas; Elan M. Katz; Gang Han; P. James Schuck; Delia J. Milliron; Bruce E. Cohen

Phosphorescent nanocrystals that upconvert near-infrared light to emit at higher energies in the visible have shown promise as photostable, nonblinking, and background-free probes for biological imaging. However, synthetic control over upconverting nanocrystal size has been difficult, particularly for the brightest system, Yb(3+)- and Er(3+)-doped β-phase NaYF(4), for which there have been no reports of methods capable of producing sub-10 nm nanocrystals. Here we describe conditions for the controlled synthesis of protein-sized β-phase NaYF(4): 20% Yb(3+), 2% Er(3+) nanocrystals, from 4.5 to 15 nm in diameter. The size of the nanocrystals was modulated by varying the concentration of basic surfactants, Y(3+):F(-) ratio, and reaction temperature, variables that also affected their crystalline phase. Increased reaction times favor formation of the desired β-phase nanocrystals while having only a modest effect on nanocrystal size. Core/shell β-phase NaYF(4): 20% Yb(3+), 2% Er(3+)/NaYF(4) nanoparticles less than 10 nm in total diameter exhibit higher luminescence quantum yields than comparable >25 nm diameter core nanoparticles. Single-particle imaging of 9 nm core/shell nanoparticles also demonstrates that they exhibit no measurable photobleaching or blinking. These results establish that small lanthanide-doped upconverting nanoparticles can be synthesized without sacrificing brightness or stability, and these sub-10 nm nanoparticles are ideally suited for single-particle imaging.


Nano Letters | 2012

Combinatorial Discovery of Lanthanide-Doped Nanocrystals with Spectrally Pure Upconverted Emission

Emory M. Chan; Gang Han; Joshua D. Goldberg; Daniel J. Gargas; Alexis D. Ostrowski; P. James Schuck; Bruce E. Cohen; Delia J. Milliron

Nanoparticles doped with lanthanide ions exhibit stable and visible luminescence under near-infrared excitation via a process known as upconversion, enabling long-duration, low-background biological imaging. However, the complex, overlapping emission spectra of lanthanide ions can hinder the quantitative imaging of samples labeled with multiple upconverting probes. Here, we use combinatorial screening of multiply doped NaYF(4) nanocrystals to identify a series of doubly and triply doped upconverting nanoparticles that exhibit narrow, spectrally pure emission spectra at various visible wavelengths. We then developed a comprehensive kinetic model validated by our extensive experimental data set. Applying this model, we elucidated the energy transfer mechanisms giving rise to spectrally pure emission. These mechanisms suggest design rules for electronic level structures that yield robust color tuning in lanthanide-doped upconverting nanoparticles. The resulting materials will be useful for background-free multicolor imaging and tracking of biological processes.


ACS Nano | 2012

Metallic Adhesion Layer Induced Plasmon Damping and Molecular Linker as a Nondamping Alternative

Terefe G. Habteyes; Scott Dhuey; Erin Wood; Daniel J. Gargas; Stefano Cabrini; P. James Schuck; A. Paul Alivisatos; Stephen R. Leone

Drastic chemical interface plasmon damping is induced by the ultrathin (∼2 nm) titanium (Ti) adhesion layer; alternatively, molecular adhesion is implemented for lithographic fabrication of plasmonic nanostructures without significant distortion of the plasmonic characteristics. As determined from the homogeneous linewidth of the resonance scattering spectrum of individual gold nanorods, an ultrathin Ti layer reduces the plasmon dephasing time significantly, and it reduces the plasmon scattering amplitude drastically. The increased damping rate and decreased plasmon amplitude are due to the dissipative dielectric function of Ti and the chemical interface plasmon damping where the conduction electrons are transferred across the metal-metal interface. In addition, a pronounced red shift due to the Ti adhesion layer, more than predicted using electromagnetic simulation, suggests the prevalence of interfacial reactions. By extending the experiment to conductively coupled ring-rod nanostructures, it is shown that a sharp Fano-like resonance feature is smeared out due to the Ti layer. Alternatively, vapor deposition of (3-mercaptopropyl)trimethoxysilane on gently cleaned and activated lithographic patterns functionalizes the glass surface sufficiently to link the gold nanostructures to the surface by sulfur-gold chemical bonds without observable plasmon damping effects.


conference on lasers and electro-optics | 2011

Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes

Alexander Weber-Bargioni; Adam M. Schwartzberg; Matteo Cornaglia; Ariel Ismach; Jeff J. Urban; Yuanjie Pang; Reuven Gordon; D. Frank Ogletree; Stefano Cabrini; P. James Schuck

An important goal in nano science is to unlock previously inaccessible physics and dynamics within nanoscale systems by combining the efficient nanoscale field confinement/optical resolution (∼10 nm) of optical antennae and the ultrafast temporal resolution (fs) inherent in optical studies with the capabilities of modern scanning probe techniques. Here we report on a significant step toward this goal using a novel nanofabricated coaxial antenna tip capable of recording useful Raman spectra in ∼50 ms to acquire 256 by 256 pixel images on dielectric substrates with a full spectrum at each pixel.


Nano Letters | 2011

Theta-Shaped Plasmonic Nanostructures: Bringing “Dark” Multipole Plasmon Resonances into Action via Conductive Coupling

Terefe G. Habteyes; Scott Dhuey; Stefano Cabrini; P. James Schuck; Stephen R. Leone

Quadrupole plasmon and (octupolar) Fano resonances are induced in lithographically fabricated theta-shaped ring-rod gold nanostructures. The optical response is characterized by measuring the light scattered by individual nanostructures. When the nanorod is brought within 3 nm of the ring wall, a weak quadrupolar resonance is observed due to capacitive coupling, and when a necklike conductive bridge links the nanorod to the nanoring the optical response changes dramatically bringing the quadrupolar resonance into prominence and creating an octupolar Fano resonance. The Fano resonance is observed due to the destructive interference of the octupolar resonance with the overlapping and broadened dipolar resonance. The quadrupolar and Fano resonances are further enhanced by capacitive coupling (near-field interaction) that is favored by the theta-shaped arrangement. The interpretation of the data is supported by FDTD simulation.


Journal of Physical Chemistry B | 2012

Concentrating and recycling energy in lanthanide codopants for efficient and spectrally pure emission: the case of NaYF4:Er3+/Tm3+ upconverting nanocrystals.

Emory M. Chan; Daniel J. Gargas; P. James Schuck; Delia J. Milliron

In lanthanide-doped materials, energy transfer (ET) between codopant ions can populate or depopulate excited states, giving rise to spectrally pure luminescence that is valuable for the multicolor imaging and simultaneous tracking of multiple biological species. Here, we use the case study of NaYF(4) nanocrystals codoped with Er(3+) and Tm(3+) to theoretically investigate the ET mechanisms that selectively enhance and suppress visible upconversion luminescence under near-infrared excitation. Using an experimentally validated population balance model and using a path-tracing algorithm to objectively identify transitions with the most significant contributions, we isolated a network of six pathways that combine to divert energy away from the green-emitting manifolds and concentrate it in the Tm(3+):(3)F(4) manifold, which then participates in energy transfer upconversion (ETU) to populate the red-emitting Er(3+):(4)F(9/2) manifold. We conclude that the strength of this ETU process is a function of the strong coupling of the Tm(3+):(3)F(4) manifold and its ground state, the near-optimum band alignment of Er(3+) and Tm(3+) manifolds, and the concentration of population in Tm(3+):(3)F(4). These factors, along with the ability to recycle energy not utilized for red emission, also contribute to the enhanced quantum yield of NaYF(4):Er(3+)/Tm(3+). We generalize a scheme for applying these energy concentration and recycling pathways to other combinations of lanthanide dopants. Ultimately, these ET pathways and others elucidated by our theoretical modeling will enable the programming of physical properties in lanthanide-doped materials for a variety of applications that demand strong and precisely defined optical transitions.


ACS Nano | 2011

Gold nanocone near-field scanning optical microscopy probes.

Monika Fleischer; Alexander Weber-Bargioni; M. Virginia P. Altoe; Adam M. Schwartzberg; P. James Schuck; Stefano Cabrini; Dieter P. Kern

Near-field scanning optical microscopy enables the simultaneous topographical and subdiffraction limited optical imaging of surfaces. A process is presented for the implementation of single individually engineered gold cones at the tips of atomic force microscopy cantilevers. These cantilevers act as novel high-performance optical near-field probes. In the fabrication, thin-film metallization, electron beam induced deposition of etch masks, and Ar ion milling are combined. The cone constitutes a well-defined highly efficient optical antenna with a tip radius on the order of 10 nm and an adjustable plasmon resonance frequency. The sharp tip enables high resolution topographical imaging. By controllably varying the cone size, the resonance frequency can be adapted to the application of choice. Structural properties of these sharp-tipped probes are presented together with topographical images recorded with a cone probe. The antenna functionality is demonstrated by gathering the near-field enhanced Raman signature of individual carbon nanotubes with a gold cone scanning probe.


Scientific Reports | 2013

Probing carrier lifetimes in photovoltaic materials using subsurface two-photon microscopy.

Edward S. Barnard; Eric T. Hoke; Stephen T. Connor; James Randy Groves; Tevye Kuykendall; Zewu Yan; E.C. Samulon; Edith Bourret-Courchesne; Shaul Aloni; P. James Schuck; Craig H. Peters; Brian E. Hardin

Accurately measuring the bulk minority carrier lifetime is one of the greatest challenges in evaluating photoactive materials used in photovoltaic cells. One-photon time-resolved photoluminescence decay measurements are commonly used to measure lifetimes of direct bandgap materials. However, because the incident photons have energies higher than the bandgap of the semiconductor, most carriers are generated close to the surface, where surface defects cause inaccurate lifetime measurements. Here we show that two-photon absorption permits sub-surface optical excitation, which allows us to decouple surface and bulk recombination processes even in unpassivated samples. Thus with two-photon microscopy we probe the bulk minority carrier lifetime of photovoltaic semiconductors. We demonstrate how the traditional one-photon technique can underestimate the bulk lifetime in a CdTe crystal by 10× and show that two-photon excitation more accurately measures the bulk lifetime. Finally, we generate multi-dimensional spatial maps of optoelectronic properties in the bulk of these materials using two-photon excitation.

Collaboration


Dive into the P. James Schuck's collaboration.

Top Co-Authors

Avatar

Stefano Cabrini

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Nicholas J. Borys

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Bruce E. Cohen

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Emory M. Chan

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Edward S. Barnard

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Adam M. Schwartzberg

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott Dhuey

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Shaul Aloni

Lawrence Berkeley National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge