P. K. Ghosh
Indian Grassland and Fodder Research Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by P. K. Ghosh.
Experimental Agriculture | 2012
P. K. Ghosh; M. S. Venkatesh; K. K. Hazra; Narendra Kumar
Continuous cultivation of rice–wheat cropping system in the Indo-Gangetic plains is under threat with decline in soil organic carbon (SOC), total factor productivity and overall sustainability. Pulses, an important component of crop diversification, are known to improve soil quality through their unique ability of biological N 2 fixation, leaf litter fall and deep root system. Therefore, the effect of inclusion of pulses in the puddled rice system under organic and inorganic amendments on SOC pool and its management indices were evaluated in a long-term experiment after seven cropping cycles. The results indicated that inclusion of pulses in the rice-based system improved the SOC content, being greater in surface soil (0–20 cm) and declining with soil depth. Among the four carbon fractions determined, less labile carbon fraction (C frac 3 ) was the dominant fraction in the puddled rice system, particularly under organic treatments, indicating that it is possible to maintain organic carbon for longer time in this system. The rice–wheat–mung bean system resulted in 6% increase in SOC and 85% increase in soil microbial biomass carbon as compared with the conventional rice–wheat system. Application of crop residues, farm yard manure (5 t ha −1 ) and biofertilisers had greater amount of carbon fractions and carbon management index (CMI) over control and the recommended inorganic (NPKSZnB) treatment in the soil surface, particularly in the system where pulses are included. Interestingly, in the puddled rice system, passive carbon pool is more in surface soil than deeper layers. The relative proportion of active carbon pool in surface layer (0–20 cm) to subsurface layer (20–40 cm) was highest in rice–wheat–rice–chickpea (1.14:1) followed by rice–wheat–mung bean (1.07:1) and lowest in the rice–wheat system (0.69:1). Replacing wheat with chickpea either completely or during alternate year in the conventional rice–wheat system also had positive impact on SOC restoration and CMI. Therefore, inclusion of pulses in the rice-based cropping system and organic nutrient management practices had significant impact on maintaining SOC in an Inceptisol of the Indo-Gangetic plains of India.
Experimental Agriculture | 2015
Anup Das; P. K. Ghosh; M. R. Verma; G. C. Munda; S. V. Ngachan; D. Mandal
The north eastern region (NER) of India receives a high amount of rainfall (2450 mm) both in terms of intensity and frequency. Most of the precipitation goes waste because of improper conservation measures and inadequate rainwater harvesting. Growing a second crop during winter ( rabi ) season on hill slopes and uplands without moisture conservation measure is almost impossible. A simple and very low-cost technique of in situ soil moisture conservation in maize ( Zea mays L.)–toria ( Brassica campestris L.) system has been developed using residue of preceding rainy season maize crop and mulching with locally available weed biomass Ambrosia artemisiifolia . Six residue mulching combinations tested were viz. control, Maize stalk cover (MSC), MSC + Ambrosia sp. 5 t/ha, MSC + Ambrosia sp. 10 t/ha, MSC + farmyard manure (FYM) 10 t/ha and MSC + Ambrosia sp. 5 t/ha + poultry manure 5 t/ha under zero tillage (ZT) and conventional tillage (CT) systems. Results showed that in situ residue retention of preceding maize crop along with green biomass of Ambrosia sp., applied before sowing of toria, maintained optimum soil moisture for good growth and higher yield of toria. The soil moisture content was consistently higher under residue mulched plots than that under control. All the residue mulching measures recorded higher crop yield for maize and toria than those observed under residue removal (control). The productivity of toria was enhanced by about 99%, only due to retention of MSC as mulch. Mulching with MSC + Ambrosia sp. 5 t/ha + poultry manure 5 t/ha recorded the highest seed yield of toria (four-year average: 641 kg/ha), which was 228% and 64% higher than no mulching (control) and MSC alone. MSC + FYM 10 t/ha (568.3 t/ha) and MSC + Ambrosia sp. 10 t/ha (517.4 t/ha) were found equally effective and produced significantly higher toria yield than that of control. MSC + Ambrosia mulch 10 t/ha gave the highest net returns and B:C ratio of the maize–toria system. The overall B:C ratios were better under ZT than CT. Thus, the study indicated that the integrated management of crop residues and weed biomass ( Ambrosia sp.) under ZT created favourable soil moisture to support double cropping with high yield in hill eco-system of northeastern Indian Himalayas.
Archives of Agronomy and Soil Science | 2017
M. S. Venkatesh; K. K. Hazra; P. K. Ghosh; Bhisham Lal Khuswah; Arakalagud Nanjundaiah Ganeshamurthy; Masood Ali; Jagdish Singh; Ram Sewak Mathur
ABSTRACT In the present investigation, the long-term effect of pulse crop inclusion in the maize-wheat rotation was assessed for the nutrient availability and soil-plant nutrient cycling under different nutrient management practices. Including pulses in the maize-wheat rotation improved soil organic carbon (SOC) and plant available macronutrients being higher in maize-wheat-mungbean rotation. Inclusion of mungbean to maize-wheat rotation enhanced the nitrogen (33.9%), phosphorus (46.4%), potassium (36.3%), and sulphur (55.5%) uptake in maize crop; likewise, alternate-year chickpea inclusion increased the uptake of these nutrients by 18.2, 19.1, 21.7, 32.1%, respectively. Inorganic fertilization maintained the positive annual balance of nitrogen, phosphorus, and zinc. By contrast, the nutrient balance under organic nutrient management was mostly negative. The magnitude of negative balance of potassium and sulphur was higher in inorganic than that of organic nutrient management. The low nutrient supply (particularly nitrogen) in organic fertilization largely inhibited the yield of cereal crops but not that of pulses. In view of this, the inclusion of pulses in the cereal-cereal systems could cause substantial improvement in soil fertility and sustainability in Indo-Gangetic plains. We infer that supply of nutrients like nitrogen and phosphorus in organic, and potassium and sulphur in recommended inorganic fertilization merit special attention.
Archives of Agronomy and Soil Science | 2018
K. K. Hazra; P. K. Ghosh; M. S. Venkatesh; C. P. Nath; Narendra Kumar; Mohan Singh; Jagdish Singh; Nagasamy Nadarajan
ABSTRACT Long-term effect of mungbean inclusion in lowland rice-wheat and upland maize-wheat systems on soil carbon (C) pools, particulate organic C (POC), and C-stabilization was envisaged in organic, inorganic and without nutrient management practices. In both lowland and upland systems, mungbean inclusion increased very-labile C (Cfrac1) and labile C (Cfrac2) in surface soil (0–0.2 m). Mungbean inclusion in cereal-cereal cropping systems improved POC, being higher in lowland (107.4%). Lowland rice-based system had higher passive C-pool (11.1 Mg C ha−1) over upland maize-based system (6.6 Mg C ha−1) indicating that rice ecology facilitates the stabilization of passive C-pool, which has longer persistence in soil. Organic nutrient management (farmyard manure + full crop residue + biofertilizers) increased Cfrac1 and carbon management index (CMI) over inorganic treatment. In surface soil, higher CMI values were evident in mungbean included cropping systems in both lowland and upland conditions. Mungbean inclusion increased grain yield of cereal crops, and yield improvement followed the order of maize (23.7–31.3%) > rice (16.9–27.0%) > wheat (lowland 7.0–10.7%; upland 5.4–16.6%). Thus, the inclusion of summer mungbean in cereal-cereal cropping systems could be a long-term strategy to enrich soil organic C and to ensure sustainability of cereal-cereal cropping systems.
Soil & Tillage Research | 2014
Anup Das; Rattan Lal; D. P. Patel; Ramkrushna Gandhiji Idapuganti; Jayanta Layek; S. V. Ngachan; P. K. Ghosh; Jurisandhya Bordoloi; Manoj Kumar
Soil & Tillage Research | 2014
Kevizhalhou Kuotsu; Anup Das; Rattan Lal; G. C. Munda; P. K. Ghosh; S. V. Ngachan
Canadian Journal of Soil Science | 2013
M. S. Venkatesh; K. K. Hazra; P. K. Ghosh; Cs Praharaj; Narendra Kumar
Land Degradation & Development | 2017
Anup Das; P. K. Ghosh; Rattan Lal; R. Saha; S. V. Ngachan
Nutrient Cycling in Agroecosystems | 2014
K. K. Hazra; M. S. Venkatesh; P. K. Ghosh; Arakalagud Nanjundaiah Ganeshamurthy; Narendra Kumar; Nagasamy Nadarajan; A. B. Singh
Indian Journal of Agronomy | 2012
Masood Ali; Narendra Kumar; P. K. Ghosh