Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where P. K. Patel is active.

Publication


Featured researches published by P. K. Patel.


Nature | 2014

Fuel gain exceeding unity in an inertially confined fusion implosion

O. A. Hurricane; D. A. Callahan; D. T. Casey; Peter M. Celliers; C. Cerjan; E. L. Dewald; T. R. Dittrich; T. Döppner; D. E. Hinkel; L. Berzak Hopkins; J. L. Kline; S. Le Pape; T. Ma; A. G. MacPhee; J. L. Milovich; A. Pak; H.-S. Park; P. K. Patel; B. A. Remington; J. D. Salmonson; P. T. Springer; R. Tommasini

Ignition is needed to make fusion energy a viable alternative energy source, but has yet to be achieved. A key step on the way to ignition is to have the energy generated through fusion reactions in an inertially confined fusion plasma exceed the amount of energy deposited into the deuterium–tritium fusion fuel and hotspot during the implosion process, resulting in a fuel gain greater than unity. Here we report the achievement of fusion fuel gains exceeding unity on the US National Ignition Facility using a ‘high-foot’ implosion method, which is a manipulation of the laser pulse shape in a way that reduces instability in the implosion. These experiments show an order-of-magnitude improvement in yield performance over past deuterium–tritium implosion experiments. We also see a significant contribution to the yield from α-particle self-heating and evidence for the ‘bootstrapping’ required to accelerate the deuterium–tritium fusion burn to eventually ‘run away’ and ignite.


Physics of Plasmas | 2002

Electric field detection in laser-plasma interaction experiments via the proton imaging technique

M. Borghesi; D.H. Campbell; A. Schiavi; M. G. Haines; O. Willi; A. J. Mackinnon; P. K. Patel; L. A. Gizzi; M. Galimberti; R. J. Clarke; Francesco Pegoraro; H. Ruhl; S. V. Bulanov

Due to their particular properties, the beams of the multi-MeV protons generated during the interaction of ultraintense (I>1019 W/cm2) short pulses with thin solid targets are most suited for use as a particle probe in laser-plasma experiments. The recently developed proton imaging technique employs the beams in a point-projection imaging scheme as a diagnostic tool for the detection of electric fields in laser-plasma interaction experiments. In recent investigations carried out at the Rutherford Appleton Laboratory (RAL, UK), a wide range of laser-plasma interaction conditions of relevance for inertial confinement fusion (ICF)/fast ignition has been explored. Among the results obtained will be discussed: the electric field distribution in laser-produced long-scale plasmas of ICF interest; the measurement of highly transient electric fields related to the generation and dynamics of hot electron currents following ultra-intense laser irradiation of targets; the observation in underdense plasmas, after the ...


Fusion Science and Technology | 2006

Fast Ion Generation by High-Intensity Laser Irradiation of Solid Targets and Applications

M. Borghesi; J. Fuchs; S. V. Bulanov; A. J. Mackinnon; P. K. Patel; Markus Roth

Abstract The acceleration of high-energy ion beams (up to several tens of mega-electron-volts per nucleon) following the interaction of short (t < 1 ps) and intense (I λ 2 > 1018 W˙cm-2˙μm-2) laser pulses with solid targets has been one of the most active areas of research in the last few years. The exceptional properties of these beams (high brightness and high spectral cutoff, high directionality and laminarity, and short burst duration) distinguish them from the lower-energy ions accelerated in earlier experiments at moderate laser intensities. In view of these properties, laser-driven ion beams can be employed in a number of groundbreaking applications in the scientific, technological, and medical areas. This paper reviews the main experimental results obtained in this area in recent years, the properties of the accelerated beams, the relevant theoretical and computational models, and the main applications that have been implemented or proposed.


Physics of Plasmas | 2006

High-energy Kα radiography using high-intensity, short-pulse lasersa)

H.-S. Park; D. M. Chambers; H.-K. Chung; R. J. Clarke; R. Eagleton; E. Giraldez; T. Goldsack; R. Heathcote; N. Izumi; M.H. Key; J. A. King; J. A. Koch; O. L. Landen; A. Nikroo; P. K. Patel; D. Price; B. A. Remington; H. F. Robey; Richard Adolph Snavely; D Steinman; R.B. Stephens; C. Stoeckl; M. Storm; Max Tabak; W. Theobald; R. P. J. Town; J. E. Wickersham; B. Zhang

The characteristics of 22–40keV Kα x-ray sources are measured. These high-energy sources are produced by 100TW and petawatt high-intensity lasers and will be used to develop and implement workable radiography solutions to probe high-Z and dense materials for the high-energy density experiments. The measurements show that the Kα source size from a simple foil target is larger than 60μm, too large for most radiography applications. The total Kα yield is independent of target thicknesses, verifying that refluxing plays a major role in photon generation. Smaller radiating volumes emit brighter Kα radiation. One-dimensional radiography experiments using small-edge-on foils resolved 10μm features with high contrast. Experiments were performed to test a variety of small volume two-dimensional point sources such as cones, wires, and embedded wires, measured photon yields, and compared the measurements with predictions from hybrid-particle-in-cell simulations. In addition to high-energy, high-resolution backlighte...


Physics of Plasmas | 2003

Proton spectra from ultraintense laser-plasma interaction with thin foils: Experiments, theory, and simulation

M. Allen; Y. Sentoku; Patrick Audebert; A. Blazevic; Thomas E. Cowan; J. Fuchs; J. C. Gauthier; Matthias Geissel; Manuel Hegelich; Stefan Karsch; Edward C. Morse; P. K. Patel; Markus Roth

A beam of high energy ions and protons is observed from targets irradiated with intensities up to 5×1019 W/cm2. Maximum proton energy is shown to strongly correlate with laser-irradiance on target. Energy spectra from a magnetic spectrometer show a plateau region near the maximum energy cutoff and modulations in the spectrum at approximately 65% of the cutoff energy. Presented two-dimensional particle-in-cell simulations suggest that modulations in the proton spectrum are caused by the presence of multiple heavy-ion species in the expanding plasma.


Review of Scientific Instruments | 2004

Proton radiography as an electromagnetic field and density perturbation diagnostic (invited)

A. J. Mackinnon; P. K. Patel; R. P. J. Town; M. J. Edwards; T. G. Phillips; S. C. Lerner; D. G. Hicks; M.H. Key; S. P. Hatchett; S. C. Wilks; M. Borghesi; L. Romagnani; S. Kar; T. Toncian; Georg Pretzler; O. Willi; M. Koenig; E. Martinolli; S. Lepape; A. Benuzzi-Mounaix; P. Audebert; J. C. Gauthier; J.A. King; R. Snavely; R. R. Freeman; T. Boehlly

Laser driven proton beams have been used to diagnose transient fields and density perturbations in laser produced plasmas. Grid deflectometry techniques have been applied to proton radiography to obtain precise measurements of proton beam angles caused by electromagnetic fields in laser produced plasmas. Application of proton radiography to laser driven implosions has demonstrated that density conditions in compressed media can be diagnosed with million electron volt protons. This data has shown that proton radiography can provide unique insight into transient electromagnetic fields in super critical density plasmas and provide a density perturbation diagnostics in compressed matter.


Physics of Plasmas | 2014

The high-foot implosion campaign on the National Ignition Facilitya)

O. A. Hurricane; D. A. Callahan; D. T. Casey; E. L. Dewald; T. R. Dittrich; T. Döppner; M. A. Barrios Garcia; D. E. Hinkel; L. Berzak Hopkins; P. Kervin; J. L. Kline; S. Le Pape; T. Ma; A. G. MacPhee; J. L. Milovich; J. D. Moody; A. Pak; P. K. Patel; H.-S. Park; B. A. Remington; H. F. Robey; J. D. Salmonson; P. T. Springer; R. Tommasini; L. R. Benedetti; J. A. Caggiano; Peter M. Celliers; C. Cerjan; Rebecca Dylla-Spears; D. H. Edgell

The “High-Foot” platform manipulates the laser pulse-shape coming from the National Ignition Facility laser to create an indirect drive 3-shock implosion that is significantly more robust against instability growth involving the ablator and also modestly reduces implosion convergence ratio. This strategy gives up on theoretical high-gain in an inertial confinement fusion implosion in order to obtain better control of the implosion and bring experimental performance in-line with calculated performance, yet keeps the absolute capsule performance relatively high. In this paper, we will cover the various experimental and theoretical motivations for the high-foot drive as well as cover the experimental results that have come out of the high-foot experimental campaign. At the time of this writing, the high-foot implosion has demonstrated record total deuterium-tritium yields (9.3×1015) with low levels of inferred mix, excellent agreement with implosion simulations, fuel energy gains exceeding unity, and evidenc...


Physics of Plasmas | 2008

High-resolution 17–75keV backlighters for high energy density experiments

H.-S. Park; Brian Maddox; E. Giraldez; S. P. Hatchett; L. T. Hudson; N. Izumi; M.H. Key; S. Le Pape; A. J. Mackinnon; A. G. MacPhee; P. K. Patel; Thomas W. Phillips; B. A. Remington; J. F. Seely; R. Tommasini; R. P. J. Town; J. Workman; E. Brambrink

We have developed 17 keV to 75 keV 1-dimensional and 2-dimensional high-resolution ( 10{sup 17} W/cm{sup 2}. We have achieved high resolution point projection 1-dimensional and 2-dimensional radiography using micro-foil and micro-wire targets attached to low-Z substrate materials. The micro-wire size was 10 {micro}m x 10 {micro}m x 300 {micro}m on a 300 {micro}m x 300 {micro}m x 5 {micro}m CH substrate. The radiography performance was demonstrated using the Titan laser at LLNL. We observed that the resolution is dominated by the micro-wire target size and there is very little degradation from the plasma plume, implying that the high energy x-ray photons are generated mostly within the micro-wire volume. We also observe that there are enough K{alpha} photons created with a 300 J, 1-{omega}, 40 ps pulse laser from these small volume targets, and that the signal-to-noise ratio is sufficiently high, for single shot radiography experiments. This unique technique will be used on future high energy density (HED) experiments at the new Omega-EP, ZR and NIF facilities.


Physics of Plasmas | 2004

Fusion neutron and ion emission from deuterium and deuterated methane cluster plasmas

Kirk W. Madison; P. K. Patel; D. Price; A. Edens; M. Allen; Thomas E. Cowan; J. Zweiback; T. Ditmire

Experiments on the interaction of intense, ultrafast pulses with large van der Waals bonded clusters have shown that these clusters can explode with substantial kinetic energy and that the explosion of deuterium clusters can drive nuclear fusion reactions. Producing explosions in deuterated methane clusters with a 100 fs, 100 TW laser pulse, it is found that deuterium ions are accelerated to sufficiently high kinetic energy to drive deuterium nuclear fusion. From measurements of cluster size and ion energy via time of flight methods, it is found that these exploding deuterated methane clusters exhibit higher ion energies than explosions of comparably sized neat deuterium clusters, in accord with recent theoretical predictions. From measurements of the plume size and peak density, the relative contribution to the fusion yield from both beam target and intrafilament fusion is discussed.


Physics of Plasmas | 2015

Radiation hydrodynamics modeling of the highest compression inertial confinement fusion ignition experiment from the National Ignition Campaign

D. S. Clark; M. M. Marinak; C. R. Weber; David C. Eder; S. W. Haan; B. A. Hammel; D. E. Hinkel; O. S. Jones; J. L. Milovich; P. K. Patel; H. F. Robey; J. D. Salmonson; S. M. Sepke; C. A. Thomas

The recently completed National Ignition Campaign (NIC) on the National Ignition Facility (NIF) showed significant discrepancies between post-shot simulations of implosion performance and experimentally measured performance, particularly in thermonuclear yield. This discrepancy between simulation and observation persisted despite concerted efforts to include all of the known sources of performance degradation within a reasonable two-dimensional (2-D), and even three-dimensional (3-D), simulation model, e.g., using measured surface imperfections and radiation drives adjusted to reproduce observed implosion trajectories [Clark et al., Phys. Plasmas 20, 056318 (2013)]. Since the completion of the NIC, several effects have been identified that could explain these discrepancies and that were omitted in previous simulations. In particular, there is now clear evidence for larger than anticipated long-wavelength radiation drive asymmetries and a larger than expected perturbation seeded by the capsule support tent. This paper describes an updated suite of one-dimensional (1-D), 2-D, and 3-D simulations that include the current best understanding of these effects identified since the NIC, as applied to a specific NIC shot. The relative importance of each effect on the experimental observables is compared. In combination, these effects reduce the simulated-to-measured yield ratio from 125:1 in 1-D to 1.5:1 in 3-D, as compared to 15:1 in the best 2-D simulations published previously. While the agreement with the experimental data remains imperfect, the comparison to the data is significantly improved and suggests that the largest sources for the previous discrepancies between simulation and experiment are now being included.

Collaboration


Dive into the P. K. Patel's collaboration.

Top Co-Authors

Avatar

F. N. Beg

University of California

View shared research outputs
Top Co-Authors

Avatar

M.H. Key

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

A. J. Mackinnon

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

T. Ma

University of California

View shared research outputs
Top Co-Authors

Avatar

H.S. McLean

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. G. MacPhee

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge