Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where P. L. J. Monteiro is active.

Publication


Featured researches published by P. L. J. Monteiro.


Theriogenology | 2015

Progesterone supplementation after ovulation: Effects on corpus luteum function and on fertility of dairy cows subjected to AI or ET

P. L. J. Monteiro; A. B. Nascimento; G. C. S. Pontes; Gabriela O. Fernandes; L. F. Melo; M.C. Wiltbank; R. Sartori

Three experiments were done to evaluate the effects of progesterone (P4) supplementation starting during metestrus on formation of the CL and on fertility of lactating dairy cows subjected to fixed-time artificial insemination (FTAI) or embryo transfer (ET). In experiment 1, 42 Holstein cows were randomly allocated to untreated (Control) or to receive an intravaginal implant containing 1.9 g of P4 from Day 3 to 20 after FTAI (controlled internal drug release [CIDR]). Blood samples were collected on Days 3, 4, 7, 11, 14, 17, 20, and 21 after FTAI to evaluate the effect of CIDR supplementation on plasma concentration of P4 using radioimmunoassay. Ultrasound scans were performed at Days 4, 7, 11, 14, and 20 to evaluate CL volume. In experiment 2, the effect on CIDR supplementation on fertility was evaluated in 668 Holstein and crossbred dairy cows that were subjected to FTAI and allocated randomly to untreated (AI-Control) or to receive a CIDR from Day 3 to 17 (AI-CIDR) after FTAI. In experiment 3, 360 Holstein cows were treated with PGF and after heat detection (Day 0), they were allocated to untreated (ET-Control) or to receive a CIDR from Day 4 ± 1 to 8 ± 1 (ET-CIDR-4) or a CIDR from 4 ± 1 to 18 ± 1 (ET-CIDR-14). In vitro-produced embryos were transferred on Day 8 ± 1. Pregnancy diagnoses were performed by ultrasound. In experiment 1, there was interaction between treatment and day in relation to plasma P4 on Days 4 and 7 due to CIDR supplementation. Independent of treatment, pregnant cows had higher plasma P4 from Day 14 to 21 than nonpregnant cows (P ≤ 0.05). Supplementation with CIDR did not alter CL development. In experiment 2, there was no effect of supplementation of P4 on pregnancy per AI on Day 32 (32.0% vs. 31.8%, for AI-Control and AI-CIDR, respectively) or pregnancy loss (15.6% vs. 17.6%, for AI-Control and AI-CIDR, respectively). In experiment 3, P4 supplementation compromised pregnancy per ET (P/ET) on Day 32 in both supplemented groups (39.7% vs. 21.3% vs. 15.2%, for ET-Control, ET-CIDR-4, and ET-CIDR-14, respectively), with no effect on pregnancy loss. Therefore, although CIDR insertion on Day 3 after FTAI did not affect CL function and increased circulating P4, it did not increase pregnancy per AI in lactating dairy cows submitted to FTAI. Moreover, P4 supplementation decreased pregnancy per ET in lactating recipient cows.


Journal of Dairy Science | 2015

Increasing estradiol benzoate, pretreatment with gonadotropin-releasing hormone, and impediments for successful estradiol-based fixed-time artificial insemination protocols in dairy cattle

P. L. J. Monteiro; M. Borsato; F.L.M. Silva; A. B. Prata; M.C. Wiltbank; R. Sartori

With the objective to optimize fixed-time artificial insemination (FTAI) protocols based on estradiol benzoate (EB) and progesterone (P4), we performed 2 experiments (Exp.) in dairy cows. In Exp. 1 (n=44), we hypothesized that increased EB (EB3=3 mg vs. EB2=2 mg) on d 0 would improve synchronization of ovarian follicle wave emergence. Likewise, in Exp. 2 (n=82), we hypothesized that a GnRH treatment on d -3 (early in a follicular wave on d 0) versus d -7 (presence of a dominant follicle on d 0) would better synchronize wave emergence. Moreover, results from both experiments were combined to identify reasons for the lack of synchronization. All cows were treated with EB at the time of introduction of a P4 implant (d 0). On d 7, cows were given 25 mg of prostaglandin F2α; on d 8, the implant was removed and cows were given 1mg of estradiol cypionate. All cows received FTAI on d 10. In both experiments, daily ultrasound evaluations were performed and, in Exp. 2, circulating P4 was evaluated during the protocol. Pregnancy per artificial insemination (P/AI) was determined on d 31 and 59 after FTAI. In Exp. 1, EB dose did not change time to wave emergence, but EB3 compared with EB2 decreased the percentage of cows with a corpus luteum on d 7 (19.8 vs. 55.3%) and time to ovulation (10.4 vs. 10.9 d). In Exp. 2, although we detected a tendency for delayed follicle wave emergence after the start of the FTAI protocol in cows ovulating to GnRH given on d -7, there was no difference in percentage of cows with a synchronized wave emergence (~80%). Regardless of treatment, more cows with P4<0.1 ng/mL, compared with P4≥0.1 and <0.22 ng/mL at the time of AI, ovulated to the protocol (81.2 vs. 58.0%) and had increased P/AI (47.4 vs. 21.4%). An analysis of data from both experiments showed that only 73.8% (93/126) of cows had synchronized wave emergence, and only 77.8% (98/126) of cows ovulated at the end of the protocol. Fertility was much greater in cows that had emergence of a new wave synchronized and ovulated to end of the protocol [P/AI 61.3% (46/75)] compared with cows that failed to present one or both of the outcomes above [15.7% (8/51)]. Thus, although current FTAI protocols using EB and P4 produce P/AI between 30 and 40% for lactating dairy cows, there remains room for improvement because less than 60% (75/126) of the cows were correctly synchronized. Starting the FTAI protocol without the dominant follicle or increasing the dose of EB to 3mg was not effective in increasing synchronization rate.


Journal of Dairy Science | 2016

Development of insulin resistance in dairy cows by 150 days of lactation does not alter oocyte quality in smaller follicles

L. H. Oliveira; A. B. Nascimento; P. L. J. Monteiro; M.M. Guardieiro; M.C. Wiltbank; R. Sartori

The objective of this study was to test the hypothesis that high-producing dairy cows become increasingly resistant to insulin throughout lactation and that, consequently, oocyte quality is compromised. We used Holstein cows at 50 (51.5±3.7; n=30), 100 (102.3±9.4; n=30), and 150 (154.5±18.9; n=30) days in milk (DIM). We measured circulating insulin and glucose and performed a glucose tolerance test (GTT) after 5h of fasting. To evaluate oocyte quality, we performed ovum pickup on the day before the GTT (581 oocytes). We performed statistical analyses using the MIXED procedure of SAS. The model included the fixed effects of DIM, period, time, parity, and an interaction between DIM and time. We observed no difference in the GTT between groups for any variable related to circulating glucose (for example, glucose peak=203.3±7.2, 208.8±6.3, and 194.3±5.9mg/dL). However, various measures of circulating insulin were different in cows at 150 DIM compared with 50 or 100 DIM: higher basal insulin (8.8±0.9, 8.8±0.8, and 11.9±0.8 µIU/mL), peak insulin (61.9±6.2, 69.1±5.7, and 89.0±6.1 µIU/mL), delta maximum insulin (51.1±5.5, 59.4±5.0, and 73.5±5.4 µIU/mL), and area under the curve 5-60 (1,874.8±171.0, 2,189.5±157.8, and 2,610.5±174.0 µIU/mL × min). Nevertheless, we observed no difference among groups in the number of viable oocytes (3.2±0.7, 3.9±0.7, and 3.6±0.7 per cow per ovum pickup) or percentage of viable oocytes (49.3, 52.2, and 51.8%). Increased circulating insulin before and throughout the GTT in cows at 150 DIM indicates that cows develop increasing insulin resistance with increasing DIM; however, increased insulin resistance was not associated with a detectable alteration in the quality of oocytes aspirated from small and medium-sized follicles.


Journal of Dairy Science | 2016

Progesterone-based fixed-time artificial insemination protocols for dairy cows: Gonadotropin-releasing hormone versus estradiol benzoate at initiation and estradiol cypionate versus estradiol benzoate at the end

L. F. Melo; P. L. J. Monteiro; R. S. Surjus; J. N. Drum; M.C. Wiltbank; R. Sartori

Our objectives were to evaluate ovarian dynamics and fertility comparing 2 treatments at the start of a progesterone (P4)-based fixed-time artificial insemination (FTAI) protocol and 2 treatments at the end of the protocol. Thus, 1,035 lactating Holstein cows were assigned in a random phase of the estrous cycle to 1 of 4 treatments using a completely randomized design with a 2×2 factorial arrangement. At the beginning of the protocol (d -10), cows received GnRH or estradiol benzoate (EB) and, at the end, EB (d -1) or estradiol cypionate (ECP; d -2), resulting in 4 treatments: GnRH-EB, GnRH-ECP, EB-EB, and EB-ECP. All cows received an intravaginal P4 device on d -10, which was removed on d -2. Cows also received PGF2α on d -3 and -2. The FTAI was performed on d 0. Ovaries were evaluated by ultrasound for corpus luteum (CL) presence and regression (d -10 and -3) and follicle measurements (d -10 and 0), as well as the uterus for percentage pregnant per AI (P/AI; d 32 and 60). Blood samples were collected (d -10 and -3) for P4 measurements. Treatment with GnRH rather than EB tended to increase P/AI on d 32 (38.2 vs. 33.7%) and on d 60 (32.9 vs. 28.9%). More cows treated with GnRH had CL on d -3 compared with EB-treated cows (77.3 vs. 58.3%), due to less CL regression between d -10 and -3 (24.7 vs. 43.8%) and more cows with a new CL on d -3 (35.9 vs. 25.0%). Cows treated with GnRH also had greater P4 concentrations on d -3 than EB cows (3.4 vs. 2.0 ng/mL). Increased circulating P4 at the start of the protocol (d -10) decreased the probability of ovulation to EB or GnRH at that time. Cows from GnRH group also ovulated a larger-diameter follicle at the end of the protocol (15.5 vs. 14.7mm). No difference between EB and ECP in P/AI on d 32 (34.8 vs. 37.0) and 60 (30.8 vs. 31.0%) or in pregnancy loss (11.1 vs. 15.4%) was detected and we found no interaction between treatments for P/AI. Independent of treatment, cows with CL on d -10 and -3 had the greatest P/AI on d 60 (36.9%). In conclusion, treatments at the end of the protocol were similar for ECP or EB and we found no additive effect or interactions on P/AI between treatments. However, cows treated with GnRH rather than EB on d -10 had less luteolysis and tended to have greater P/AI, probably because P4 concentrations were greater during the protocol. Finally, regardless of treatments, cows with CL at the beginning of the protocol as well as at the time of PGF2α had greater fertility.


Journal of Dairy Science | 2018

Circulating progesterone concentrations in nonlactating Holstein cows during reuse of intravaginal progesterone implants sanitized by autoclave or chemical disinfection

L. F. Melo; P. L. J. Monteiro; L. H. Oliveira; M.M. Guardieiro; J. N. Drum; M.C. Wiltbank; R. Sartori

The aim of this study was to compare plasma progesterone (P4) concentrations in nonlactating, multiparous Holstein cows (n = 24) treated with 2 types of intravaginal implants containing either 1.0 or 1.9 g of P4 either at the first use or during reuse of the implants after sanitizing the implant by autoclave or chemical disinfection. In a completely randomized design with a 2 × 3 factorial arrangement and 2 replicates, every cow underwent 2 of 6 treatments. Two sources of P4 [controlled internal drug release (1.9 g of P4) from Zoetis (São Paulo, Brazil), and Sincrogest (1.0 g of P4) from Ourofino (Cravinhos, Brazil)] and 3 types of processing, new (N), reused after autoclave (RA), and reused after chemical disinfection (RC), were used. After inducing luteolysis to avoid endogenous circulating P4, the cows were randomized in 1 of 6 treatments (1.9 g of N, 1.9 g of RA, 1.9 g of RC, 1.0 g of N, 1.0 g of RA, and 1.0 g RC). Cows were treated with the implants for 8 d and during this period blood samples were collected at 0, 2, 12, 24, 48, 72, 96, 120, 144, 168, and 192 h. Statistical analyses were performed using Proc-Mixed and the mean ± standard error of the mean P4 concentrations were calculated using the Proc-Means procedures of SAS 9.4 (SAS Institute Inc., Cary, NC). No interaction between treatments was observed. Comparing types of implant, average P4 concentrations during treatments were greater for 1.9 g than 1.0 g (1.46 vs. 1.14 ± 0.04 ng/mL). When types of processing were compared, average P4 concentrations did not differ between autoclaved and new inserts (1.46 vs. 1.37 ± 0.05 ng/mL; respectively), but both were greater than chemically disinfected implants (1.09 ± 0.04 ng/mL). Within 1.9-g P4 inserts, P4 concentrations from autoclaved implants were greater than new, which were greater than chemically disinfected (1.67 ± 0.06 vs. 1.49 ± 0.07 vs. 1.21 ± 0.05 ng/mL; respectively). For 1.0-g P4 implants, P4 concentrations from autoclaved did not differ from new, but both were greater than chemically disinfected (1.20 ± 0.08 vs. 1.24 ± 0.06 vs. 0.97 ± 0.05 ng/mL; respectively). In conclusion, the mean plasma P4 concentration in nonlactating Holstein cows was greater for 1.9 than 1.0 g of P4 and regardless of the type of implant, the autoclaving process provided greater circulating P4 in relation to chemical disinfection, and similar or greater P4 concentrations compared with a new implant.


Journal of Dairy Science | 2016

Short communication: Follicle superstimulation before ovum pick-up for in vitro embryo production in Holstein cows

L. H. Oliveira; Carlos P. Sanches; Adriano S. Seddon; Márcio Barciela Veras; Flávio Aragon Lima; P. L. J. Monteiro; M.C. Wiltbank; R. Sartori

The objective was to evaluate in vitro embryo production (IVEP) in nonlactating Holstein cows after ovarian superstimulation. Cows were randomly assigned in a crossover design to 1 of 2 groups: control (n=35), which was not synchronized and not treated with hormones before ovum pick-up (OPU), or hormone-treated (n=35), in which wave emergence was synchronized and animals treated with porcine (p)-FSH in the presence of norgestomet before OPU. In the hormone-treated group, all follicles ≥7mm in diameter were aspirated for synchronization of wave emergence and cows received a norgestomet ear implant. After 36h, treatment with p-FSH (6 doses of 40mg each, 12h apart, i.m.) started. Ovum pick-up from follicles >2mm in diameter was performed 44h after the last p-FSH (coasting). Then, IVEP was performed. The total number of cumulus-oocyte complexes recovered (16.0 vs. 20.5±2.2) and number of grades I to III (viable) oocytes (10.7 vs. 12.3±1.6) did not differ between hormone-treated and control groups Additionally, no differences were found in the number of blastocysts per cow per OPU (3.0 vs. 2.6±0.5) or in blastocyst rates (17.1 vs. 12.2±2.4%) between hormone-treated and control, respectively. Thus, in this study, ovarian follicle superstimulation with p-FSH followed by coasting in nonlactating Holstein cows that had synchronization of wave emergence and progestin supplementation did not improve oocyte quality or IVEP compared to no hormonal treatment.


Animal reproduction | 2016

Fertilization rate and embryo production of superovulated dairy cows after insemination with non-sorted and sex-sorted semen

P. L. J. Monteiro; André Mariano Batista; F. C Almeida; A. E. S Figueirêdo; P. C Soares; G. F Carneiro; Maria Madalena Pessoa Guerra

The aim of this study was to evaluate the fertilization rate of cows that were superovulated and artificially inseminated with sex-sorted semen. Cows were treated with an intravaginal progesterone device plus estradiol benzoate (day 0). Superstimulation treatments began four days after with eight applications of FSH at 12 h intervals. D-Cloprostenol was administered on day 6. Progesterone device was removed on day 7, and LH was administered on day 8. The treatments were divided as follows: NonSx, two AI with non-sorted semen were conducted 12 and 24 h after LH; Sx12&24, two AI with sex-sorted semen were conducted 12 and 24 h after LH; and Sx24&36, two AI with sex-sorted semen were conducted 24 and 36 h after LH. Embryos were recovered on day 16 and were evaluated and classified. Percentage of fertilized embryos tended to be greater for the non-sorted semen than the sex-sorted semen. The number of unfertilized oocytes was smaller when the non-sorted semen was used relative to the sex-sorted semen. There was no difference between the treatments that used sexed semen. In conclusion, the use of sex-sorted semen in superovulated dairy cows results in greater numbers of unfertilized oocytes than non-sorted. However, when only sorted semen is used AI should be performed 24 and 36 h after LH.


Journal of Dairy Science | 2018

Follicular dynamics, circulating progesterone, and fertility in Holstein cows synchronized with reused intravaginal progesterone implants that were sanitized by autoclave or chemical disinfection

L. F. Melo; P. L. J. Monteiro; A. B. Nascimento; J. N. Drum; Camila Spies; A. B. Prata; M.C. Wiltbank; R. Sartori

This experiment aimed to compare circulating progesterone (P4), follicular dynamics, and fertility during reuse of intravaginal P4 implants that were sanitized by autoclave or chemical disinfection in lactating Holstein cows submitted to fixed-time artificial insemination (FTAI). For this, 123 primiparous and 226 multiparous cows from 2 farms, averaging (mean ± standard deviation) 163.9 ± 141.9 d in milk, 35.7 ± 11.3 kg of milk/d, and a body condition score of 2.9 ± 0.5, were enrolled in the study. Cows were randomly assigned to 1 of 2 treatments using a completely randomized design and each cow received a reused implant (1.9 g of P4; previously used for 8 d) that was either autoclaved (AUT; n = 177) or chemically disinfected (CHEM; n = 172) on d -10. Also on d -10, cows received 2 mg of estradiol benzoate and 100 μg of GnRH. On d -3, cows received 25 mg of dinoprost (PGF2α). A second PGF2α was given on d -2, along with 1 mg of estradiol cypionate and P4 implant removal. Cows received FTAI on d 0. A subset of cows (n = 143) was evaluated by ultrasound on d -10, -8, -6, -3, -2, 0, and 5 to identify ovarian structures, and blood was sampled on d -10, -3, and -2 for P4 concentrations by RIA. Pregnancy diagnoses were performed at d 32 and 60. Statistical analyses was performed using PROC-MIXED for continuous variables and PROC-GLIMMIX of SAS 9.4 (SAS Institute Inc., Cary, NC) for binomial variables. The treatments did not differ in circulating P4 on d -10 or -3, but P4 was greater on d -2 in CHEM cows. Ovulation to the treatments on d -10 was associated with lower circulating P4 on d -10 (2.0 vs. 3.1 ng/mL) and resulted in greater P4 on d -3 (4.0 vs. 2.4 ng/mL) and more cows with a corpus luteum on d -3 (100 vs. 40%) than nonovulating cows. Cows that ovulated to d -10 treatments were more likely to have a synchronized new follicular wave (97.9 vs. 63.2%) and had an earlier wave emergence (1.9 vs. 2.6 d), resulting in less cows ovulating a persistent follicle (0.0 vs. 35.7%). Type of P4 implant, corpus luteum presence on d -10, and ovulation to d -10 treatments did not affect fertility (pregnancy per AI; P/AI). However, P/AI on farm A was greater than on farm B at 32 (40.8 vs. 27.8%) and 60 d (35.8 vs. 24.3%), independent of treatment. In conclusion, P4 implants with different P4 release patterns did not produce detectable differences in follicular dynamics, synchronization rate, or P/AI. Nevertheless, presence of corpus luteum or ovulation at the beginning of the FTAI protocol affected reproductive variables, such as timing and synchronization of follicular wave emergence, and size of the ovulatory follicle. Beyond that, more overall synchronized cows became pregnant to the FTAI protocol.


Theriogenology | 2016

Metabolic and endocrine differences between Bos taurus and Bos indicus females that impact the interaction of nutrition with reproduction.

R. Sartori; L. U. Gimenes; P. L. J. Monteiro; L. F. Melo; P. S. Baruselli; M. R. Bastos


Reproduction, Fertility and Development | 2014

105 RETAINED FETAL MEMBRANES: INCIDENCE AND EFFECT ON MILK PRODUCTION AND REPRODUCTIVE PERFORMANCE IN DAIRY COWS

R. Sartori; G. C. S. Pontes; P. L. J. Monteiro; A. B. Nascimento; L. F. Melo; M.C. Wiltbank

Collaboration


Dive into the P. L. J. Monteiro's collaboration.

Top Co-Authors

Avatar

R. Sartori

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

M.C. Wiltbank

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. N. Drum

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

L. F. Melo

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

A. B. Prata

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L. H. Oliveira

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Spies

University of São Paulo

View shared research outputs
Researchain Logo
Decentralizing Knowledge