Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where P. M. Kilmartin is active.

Publication


Featured researches published by P. M. Kilmartin.


Nature | 2006

Discovery of a cool planet of 5.5 Earth masses through gravitational microlensing

J.-P. Beaulieu; D. P. Bennett; P. Fouqué; A. Williams; M. Dominik; U. G. Jørgensen; D. Kubas; A. Cassan; C. Coutures; J. Greenhill; K. Hill; J. Menzies; Penny D. Sackett; M. D. Albrow; S. Brillant; J. A. R. Caldwell; J. J. Calitz; K. H. Cook; E. Corrales; M. Desort; S. Dieters; D. Dominis; J. Donatowicz; M. Hoffman; S. Kane; J.-B. Marquette; R. Martin; P. Meintjes; K. R. Pollard; Kailash C. Sahu

In the favoured core-accretion model of formation of planetary systems, solid planetesimals accumulate to build up planetary cores, which then accrete nebular gas if they are sufficiently massive. Around M-dwarf stars (the most common stars in our Galaxy), this model favours the formation of Earth-mass (M⊕) to Neptune-mass planets with orbital radii of 1 to 10 astronomical units (au), which is consistent with the small number of gas giant planets known to orbit M-dwarf host stars. More than 170 extrasolar planets have been discovered with a wide range of masses and orbital periods, but planets of Neptunes mass or less have not hitherto been detected at separations of more than 0.15 au from normal stars. Here we report the discovery of a 5.5+5.5-2.7 M⊕ planetary companion at a separation of 2.6+1.5-0.6 au from a 0.22+0.21-0.11 M[circdot] M-dwarf star, where M[circdot] refers to a solar mass. (We propose to name it OGLE-2005-BLG-390Lb, indicating a planetary mass companion to the lens star of the microlensing event.) The mass is lower than that of GJ876d (ref. 5), although the error bars overlap. Our detection suggests that such cool, sub-Neptune-mass planets may be more common than gas giant planets, as predicted by the core accretion theory.


Nature | 2011

Unbound or distant planetary mass population detected by gravitational microlensing

T. Sumi; K. Kamiya; D. P. Bennett; I. A. Bond; F. Abe; C. S. Botzler; A. Fukui; K. Furusawa; J. B. Hearnshaw; Y. Itow; P. M. Kilmartin; A. Korpela; W. Lin; C. H. Ling; K. Masuda; Y. Matsubara; N. Miyake; M. Motomura; Y. Muraki; M. Nagaya; S. Nakamura; K. Ohnishi; T. Okumura; Y. C. Perrott; N. J. Rattenbury; To. Saito; T. Sako; D. J. Sullivan; W. L. Sweatman; P. J. Tristram

Since 1995, more than 500 exoplanets have been detected using different techniques, of which 12 were detected with gravitational microlensing. Most of these are gravitationally bound to their host stars. There is some evidence of free-floating planetary-mass objects in young star-forming regions, but these objects are limited to massive objects of 3 to 15 Jupiter masses with large uncertainties in photometric mass estimates and their abundance. Here, we report the discovery of a population of unbound or distant Jupiter-mass objects, which are almost twice () as common as main-sequence stars, based on two years of gravitational microlensing survey observations towards the Galactic Bulge. These planetary-mass objects have no host stars that can be detected within about ten astronomical units by gravitational microlensing. However, a comparison with constraints from direct imaging suggests that most of these planetary-mass objects are not bound to any host star. An abrupt change in the mass function at about one Jupiter mass favours the idea that their formation process is different from that of stars and brown dwarfs. They may have formed in proto-planetary disks and subsequently scattered into unbound or very distant orbits.


Astronomy and Astrophysics | 2004

The host of GRB 030323 at z=3.372: A very high column density DLA system with a low metallicity

Paul M. Vreeswijk; Sara L. Ellison; Cedric Ledoux; R. A. M. J. Wijers; Johan Peter Uldall Fynbo; P. Møller; Arne A. Henden; J. Hjorth; Gianluca Masi; E. Rol; B. L. Jensen; Nial R. Tanvir; Andrew J. Levan; J. M. Castro Cerón; J. Gorosabel; A. J. Castro-Tirado; Andrew S. Fruchter; C. Kouveliotou; I. Burud; James E. Rhoads; N. Masetti; E. Palazzi; E. Pian; H. Pedersen; L. Kaper; A. C. Gilmore; P. M. Kilmartin; J. Buckle; Marc S. Seigar; Dieter H. Hartmann

We present photometry and spectroscopy of the afterglow of GRB 030323. VLT spectra of the afterglow show damped Lyα (DLA) absorption and low- and high-ionization lines at a redshift z = 3.3718 ± 0.0005. The inferred neutral hy- drogen column density, log N(Hi) = 21.90 ± 0.07, is larger than any (GRB- or QSO-) DLA H  column density inferred directly from Lyα in absorption. From the afterglow photometry, we derive a conservative upper limit to the host-galaxy extinction: AV < 0.5 mag. The iron abundance is (Fe/H) = −1.47 ± 0.11, while the metallicity of the gas as measured from sulphur is (S/H) = −1.26 ± 0.20. We derive an upper limit on the H2 molecular fraction of 2N(H2)/(2N(H2) + N(Hi)) < 10 −6 .I n the Lyα trough, a Lyα emission line is detected, which corresponds to a star-formation rate (not corrected for dust extinction) of roughly 1 Myr −1 . All these results are consistent with the host galaxy of GRB 030323 consisting of a low metallicity gas with a low dust content. We detect fine-structure lines of silicon, Si *, which have never been clearly detected in QSO-DLAs; this suggests that these lines are produced in the vicinity of the GRB explosion site. Under the assumption that these fine-structure levels are populated by particle collisions, we estimate the H  volume density to be nHi = 10 2 −10 4 cm −3 .H ST/ACS imaging 4 months after the burst shows an extended AB(F606W) = 28.0 ± 0.3 mag object at a distance of 0.


The Astrophysical Journal | 2008

A Low-Mass Planet with a Possible Sub-Stellar-Mass Host in Microlensing Event MOA-2007-BLG-192

D. P. Bennett; I. A. Bond; A. Udalski; T. Sumi; F. Abe; A. Fukui; K. Furusawa; J. B. Hearnshaw; S. Holderness; Y. Itow; K. Kamiya; A. Korpela; P. M. Kilmartin; W. Lin; C. H. Ling; K. Masuda; Y. Matsubara; N. Miyake; Y. Muraki; M. Nagaya; Teppei Okumura; K. Ohnishi; Y. C. Perrott; N. J. Rattenbury; T. Sako; To. Saito; Shuji Sato; L. Skuljan; D. J. Sullivan; W. L. Sweatman

We report the detection of an extrasolar planet of mass ratio q~2×10-4 in microlensing event MOA-2007-BLG-192. The best-fit microlensing model shows both the microlensing parallax and finite source effects, and these can be combined to obtain the lens masses of M=0.060+0.028-0.021 Msolar for the primary and m=3.3+4.9-1.6 M? for the planet. However, the observational coverage of the planetary deviation is sparse and incomplete, and the radius of the source was estimated without the benefit of a source star color measurement. As a result, the 2 ? limits on the mass ratio and finite source measurements are weak. Nevertheless, the microlensing parallax signal clearly favors a substellar mass planetary host, and the measurement of finite source effects in the light curve supports this conclusion. Adaptive optics images taken with the Very Large Telescope (VLT) NACO instrument are consistent with a lens star that is either a brown dwarf or a star at the bottom of the main sequence. Follow-up VLT and/or Hubble Space Telescope (HST) observations will either confirm that the primary is a brown dwarf or detect the low-mass lens star and enable a precise determination of its mass. In either case, the lens star, MOA-2007-BLG-192L, is the lowest mass primary known to have a companion with a planetary mass ratio, and the planet, MOA-2007-BLG-192Lb, is probably the lowest mass exoplanet found to date, aside from the lowest mass pulsar planet.


Scopus | 2004

The host of GRB 030323 at z = 3.372: A very high column density DLA system with a low metallicity

Paul M. Vreeswijk; Sara L. Ellison; C. Ledoux; R.A.M.J. Wijers; E. Rol; L. Kaper; Van Den Heuvel Epj; J. P. U. Fynbo; J. Hjorth; B. L. Jensen; H. Pedersen; P. Møller; Arne A. Henden; Gianluca Masi; Nial R. Tanvir; Andrew J. Levan; Castro Cerón Jm; J. Gorosabel; Andrew S. Fruchter; I. Burud; James E. Rhoads; Alberto J. Castro-Tirado; C. Kouveliotou; N. Masetti; E. Palazzi; E. Pian; A. C. Gilmore; P. M. Kilmartin; J. Buckle; Marc S. Seigar

We present photometry and spectroscopy of the afterglow of GRB 030323. VLT spectra of the afterglow show damped Lyα (DLA) absorption and low- and high-ionization lines at a redshift z = 3.3718 ± 0.0005. The inferred neutral hy- drogen column density, log N(Hi) = 21.90 ± 0.07, is larger than any (GRB- or QSO-) DLA H  column density inferred directly from Lyα in absorption. From the afterglow photometry, we derive a conservative upper limit to the host-galaxy extinction: AV < 0.5 mag. The iron abundance is (Fe/H) = −1.47 ± 0.11, while the metallicity of the gas as measured from sulphur is (S/H) = −1.26 ± 0.20. We derive an upper limit on the H2 molecular fraction of 2N(H2)/(2N(H2) + N(Hi)) < 10 −6 .I n the Lyα trough, a Lyα emission line is detected, which corresponds to a star-formation rate (not corrected for dust extinction) of roughly 1 Myr −1 . All these results are consistent with the host galaxy of GRB 030323 consisting of a low metallicity gas with a low dust content. We detect fine-structure lines of silicon, Si *, which have never been clearly detected in QSO-DLAs; this suggests that these lines are produced in the vicinity of the GRB explosion site. Under the assumption that these fine-structure levels are populated by particle collisions, we estimate the H  volume density to be nHi = 10 2 −10 4 cm −3 .H ST/ACS imaging 4 months after the burst shows an extended AB(F606W) = 28.0 ± 0.3 mag object at a distance of 0.


The Astrophysical Journal | 2003

Microlensing Optical Depth toward the Galactic Bulge from Microlensing Observations in Astrophysics Group Observations during 2000 with Difference Image Analysis

T. Sumi; F. Abe; I. A. Bond; Rhea J. Dodd; J. B. Hearnshaw; M. Honda; Mareki Honma; Yukitoshi Kan-ya; P. M. Kilmartin; K. Masuda; Y. Matsubara; Y. Muraki; Takashi Nakamura; Ryoichi Nishi; S. Noda; K. Ohnishi; O. K. L. Petterson; N. J. Rattenbury; M. Reid; To. Saito; Y. Saito; H. D. Sato; M. Sekiguchi; J. Skuljan; D. J. Sullivan; Mine Takeuti; P. J. Tristram; S. Wilkinson; T. Yanagisawa; Philip Yock

We analyze the data of the gravitational microlensing survey carried out by the Microlensing Observations in Astrophysics (MOA) group during 2000 toward the Galactic bulge (GB). Our observations are designed to detect efficient high-magnification events with faint source stars and short-timescale events, by increasing the sampling rate up to ~6 times per night and using Difference Image Analysis (DIA). We detect 28 microlensing candidates in 12 GB fields corresponding to 16 deg2. We use Monte Carlo simulations to estimate our microlensing event detection efficiency, where we construct the I-band extinction map of our GB fields in order to find dereddened magnitudes. We find a systematic bias and large uncertainty in the measured value of the timescale tE,out in our simulations. They are associated with blending and unresolved sources, and are allowed for in our measurements. We compute an optical depth τ = 2.59 × 10-6 toward the GB for events with timescales 0.3 10). These events are useful for studies of extrasolar planets.


The Astrophysical Journal | 1997

MACHO Alert 95-30: First Real-Time Observation of Extended Source Effects in Gravitational Microlensing

C. Alcock; W. H. Allen; Robyn A. Allsman; D. Alves; Tim Axelrod; T. S. Banks; S. F. Beaulieu; Andrew Cameron Becker; Robert H. Becker; D. P. Bennett; I. A. Bond; Brian Carter; Kem Holland Cook; Rhea J. Dodd; Kenneth C. Freeman; Michael D. Gregg; Kim Griest; J. B. Hearnshaw; Ana Heller; M. Honda; J. Jugaku; S. Kabe; Shai Kaspi; P. M. Kilmartin; A. Kitamura; O. Kovo; M. J. Lehner; Tracy E. Love; D. Maoz; S. L. Marshall

We present analysis of MACHO Alert 95-30, a dramatic gravitational microlensing event toward the Galactic bulge whose peak magnification departs significantly from the standard point-source microlensing model. Alert 95-30 was observed in real time by the Global Microlensing Alert Network (GMAN), which obtained densely sampled photometric and spectroscopic data throughout the event. We interpret the light-curve fine structure as indicating transit of the lens across the extended face of the source star. This signifies resolution of a star several kiloparsecs distant. We find a lens angular impact parameter θmin/θsource = 0.715 ± 0.003. This information, along with the radius and distance of the source, provides an additional constraint on the lensing system. Spectroscopic and photometric data indicate the source is a M4 III star of radius 61 ± 12 R☉, located on the far side of the bulge at ~9 kpc. We derive a lens angular velocity, relative to the source, of 21.5 ± 2.9 km s-1 kpc-1, where the error is dominated by uncertainty in the angular size of the source star. Likelihood analysis yields a median lens mass of 0.67 -->+ 2.53−0.46 M☉, located with 80% probability in the Galactic bulge at a distance of 6.93 -->+ 1.56−2.25 kpc. If the lens is a main-sequence star, we can include constraints on the lens luminosity. This modifies our estimates to Mlens=0.53 -->+ 0.52−0.35 M☉ and Dlens=6.57 -->+ 0.99−2.25 kpc. Spectra taken during the event show that the absorption-line equivalent widths of Hα and the TiO bands near 6700 A vary, as predicted for microlensing of an extended source. This is most likely due to center-to-limb variation in the stellar spectral lines. The observed spectral changes further support our microlensing interpretation. These data demonstrate the feasibility of using microlensing limb crossings as a tool to probe stellar atmospheres directly.


Astronomy and Astrophysics | 2004

The line-of-sight towards GRB 030429 at z = 2.66: Probing the matter at stellar, galactic and intergalactic scales

P. Jakobsson; J. Hjorth; J. P. U. Fynbo; M. Weidinger; J. Gorosabel; Cedric Ledoux; D. Watson; G. Björnsson; Einar H. Gudmundsson; R. A. M. J. Wijers; P. Møller; Jesper Sollerman; Arne A. Henden; B. L. Jensen; A. C. Gilmore; P. M. Kilmartin; Andrew J. Levan; Jose Maria Castro Ceron; Alberto J. Castro-Tirado; Andrew S. Fruchter; C. Kouveliotou; N. Masetti; Nial R. Tanvir

We report the discovery of the optical afterglow (OA) of the long-duration gamma-ray burst GRB 030429, and present a comprehensive optical/near-infrared dataset used to probe the matter at different distance scales, i.e. in the burst environment, in the host galaxy and in an intervening absorber. A break in the afterglow light curve is seen approximately 1 day from the onset of the burst. The light curve displays a significant deviation from a simple broken power-law with a bright 1.5 mag bump with a duration of 2-3 days. The optical/near-infrared spectral energy distribution is best fit with a power-law with index beta = -0.36 ± 0.12 reddened by an SMC-like extinction law with (a modest) AV = 0.34 ± 0.04. In addition, we present deep spectroscopic observations obtained with the Very Large Telescope. The redshift measured via metal absorption lines in the OA is z = 2.658 ± 0.004. Based on the damped Lyalpha absorption line in the OA spectrum we measure the H I column density to be log N(H I) = 21.6 ± 0.2. This confirms the trend that GRBs tend to be located behind very large H I column densities. The resulting dust-to-gas ratio is consistent with that found in the SMC, indicating a low metallicity and/or a low dust-to-metal ratio in the burst environment. We find that a neighbouring galaxy, at a separation of only 1.2 arcsec, has z = 0.841 ± 0.001, ruling it out as the host of GRB 030429. The small impact parameter of this nearby galaxy, which is responsible for Mg II absorption in the OA spectrum, is in contrast to previous identifications of most QSO absorption-selected galaxy counterparts. Finally, we demonstrate that the OA was not affected by strong gravitational lensing via the nearby galaxy.


The Astrophysical Journal | 2009

The Extreme Microlensing Event OGLE-2007-BLG-224: Terrestrial Parallax Observation of a Thick-Disk Brown Dwarf

A. Gould; A. Udalski; Berto Monard; K. Horne; Subo Dong; N. Miyake; Kailash C. Sahu; D. P. Bennett; Ł. Wyrzykowski; I. Soszyński; M. K. Szymański; M. Kubiak; G. Pietrzyński; O. Szewczyk; K. Ulaczyk; W. Allen; G. W. Christie; D. L. DePoy; B. S. Gaudi; Cheongho Han; C.-U. Lee; J. McCormick; T. Natusch; B.-G. Park; Richard W. Pogge; A. Allan; M. F. Bode; D. M. Bramich; M. J. Burgdorf; M. Dominik

Parallax is the most fundamental technique for measuring distances to astronomical objects. Although terrestrial parallax was pioneered over 2000 years ago by Hipparchus (ca. 140 B.C.E.) to measure the distance to the Moon, the baseline of the Earth is so small that terrestrial parallax can generally only be applied to objects in the Solar System. However, there exists a class of extreme gravitational microlensing events in which the effects of terrestrial parallax can be readily detected and so permit the measurement of the distance, mass, and transverse velocity of the lens. Here we report observations of the first such extreme microlensing event OGLE-2007-BLG-224, from which we infer that the lens is a brown dwarf of mass M = 0.056 ± 0.004 M ☉, with a distance of 525 ± 40 pc and a transverse velocity of 113 ± 21 km s–1. The velocity places the lens in the thick disk, making this the lowest-mass thick-disk brown dwarf detected so far. Follow-up observations may allow one to observe the light from the brown dwarf itself, thus serving as an important constraint for evolutionary models of these objects and potentially opening a new window on substellar objects. The low a priori probability of detecting a thick-disk brown dwarf in this event, when combined with additional evidence from other observations, suggests that old substellar objects may be more common than previously assumed.


Experimental Astronomy | 2008

MOA-cam3: a wide-field mosaic CCD camera for a gravitational microlensing survey in New Zealand

T. Sako; T. Sekiguchi; M. Sasaki; F. Abe; I. A. Bond; J. B. Hearnshaw; Y. Itow; K. Kamiya; P. M. Kilmartin; K. Masuda; Y. Matsubara; Y. Muraki; N. J. Rattenbury; D. J. Sullivan; T. Sumi; P. J. Tristram; T. Yanagisawa; Philip Yock

We have developed a wide-field mosaic CCD camera, MOA-cam3, mounted at the prime focus of the Microlensing Observations in Astrophysics (MOA) 1.8-m telescope. The camera consists of ten E2V CCD4482 chips, each having 2k×4k pixels, and covers a 2.2 deg2 field of view with a single exposure. The optical system is well optimized to realize uniform image quality over this wide field. The chips are constantly cooled by a cryocooler at − 80° C, at which temperature dark current noise is negligible for a typical 1–3 min exposure. The CCD output charge is converted to a 16-bit digital signal by the GenIII system (Astronomical Research Cameras Inc.) and readout is within 25 s. Readout noise of 2–3 ADU (rms) is also negligible. We prepared a wide-band red filter for an effective microlensing survey and also Bessell V, I filters for standard astronomical studies. Microlensing studies have entered into a new era, which requires more statistics, and more rapid alerts to catch exotic light curves. Our new system is a powerful tool to realize both these requirements.

Collaboration


Dive into the P. M. Kilmartin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. C. Gilmore

University of Canterbury

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. J. Sullivan

Victoria University of Wellington

View shared research outputs
Researchain Logo
Decentralizing Knowledge