Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where P. R. Zimmerman is active.

Publication


Featured researches published by P. R. Zimmerman.


Journal of Geophysical Research | 1995

A global model of natural volatile organic compound emissions

Alex Guenther; C. Nicholas Hewitt; David J. Erickson; Ray Fall; Chris Geron; T. E. Graedel; Peter Harley; L. Klinger; Manuel T. Lerdau; W. A. Mckay; Tom Pierce; Bob Scholes; Rainer Steinbrecher; Raja Tallamraju; John Taylor; P. R. Zimmerman

Numerical assessments of global air quality and potential changes in atmospheric chemical constituents require estimates of the surface fluxes of a variety of trace gas species. We have developed a global model to estimate emissions of volatile organic compounds from natural sources (NVOC). Methane is not considered here and has been reviewed in detail elsewhere. The model has a highly resolved spatial grid (0.5° × 0.5° latitude/longitude) and generates hourly average emission estimates. Chemical species are grouped into four categories: isoprene, monoterpenes, other reactive VOC (ORVOC), and other VOC (OVOC). NVOC emissions from oceans are estimated as a function of geophysical variables from a general circulation model and ocean color satellite data. Emissions from plant foliage are estimated from ecosystem specific biomass and emission factors and algorithms describing light and temperature dependence of NVOC emissions. Foliar density estimates are based on climatic variables and satellite data. Temporal variations in the model are driven by monthly estimates of biomass and temperature and hourly light estimates. The annual global VOC flux is estimated to be 1150 Tg C, composed of 44% isoprene, 11% monoterpenes, 22.5% other reactive VOC, and 22.5% other VOC. Large uncertainties exist for each of these estimates and particularly for compounds other than isoprene and monoterpenes. Tropical woodlands (rain forest, seasonal, drought-deciduous, and savanna) contribute about half of all global natural VOC emissions. Croplands, shrublands and other woodlands contribute 10–20% apiece. Isoprene emissions calculated for temperate regions are as much as a factor of 5 higher than previous estimates.


Journal of Geophysical Research | 1993

Isoprene and monoterpene emission rate variability: Model evaluations and sensitivity analyses

Alex Guenther; P. R. Zimmerman; Peter Harley; Russell K. Monson; Ray Fall

The temperature dependence of monoterpene emission varies among monoterpenes, plant species, and other factors, but a simple exponential relationship between emission rate (E) and leaf temperature (T), E = Es [exp (β(T - Ts))], provides a good approximation. A review of reported measurements suggests a best estimate of β = 0.09 K-1 for all plants and monoterpenes. Isoprene emissions increase with photosynthetically active radiation up to a saturation point at 700-900 μmol m-2 s-1. An exponential increase in isoprene emission is observed at leaf temperatures of less than 30°C. Emissions continue to increase with higher temperatures until a maximum emission rate is reached at about 40°C, after which emissions rapidly decline. This temperature dependence can be described by an enzyme activation equation that includes denaturation at high temperature. -from Authors


Global Biogeochemical Cycles | 1992

Emissions of volatile organic compounds from vegetation and the implications for atmospheric chemistry

Fred C. Fehsenfeld; Jack Calvert; Ray Fall; Paul D. Goldan; Alex Guenther; C. Nicholas Hewitt; Brian K. Lamb; Shaw Liu; M. Trainer; Hal Westberg; P. R. Zimmerman

Vegetation provides a major source of reactive carbon entering the atmosphere. These compounds play an important role in (1) shaping global tropospheric chemistry, (2) regional photochemical oxidant formation, (3) balancing the global carbon cycle, and (4) production of organic acids which contribute to acidic deposition in rural areas. Present estimates place the total annual global emission of these compounds between approximately 500 and 825 Tg yr−1. The volatile olefinic compounds, such as isoprene and the monoterpenes, are thought to constitute the bulk of these emissions. However, it is becoming increasingly clear that a variety of partially oxidized hydrocarbons, principally alcohols, are also emitted. The available information concerning the terrestrial vegetation as sources of volatile organic compounds is reviewed. The biochemical processes associated with these emissions of the compounds and the atmospheric chemistry of the emitted compounds are discussed.


Journal of Geophysical Research | 1992

Ozone precursor relationships in the ambient atmosphere

W. L. Chameides; Fred C. Fehsenfeld; Michael O. Rodgers; Carlos Cardelino; J. Martinez; D. D. Parrish; W. Lonneman; D. R. Lawson; Reinhold A. Rasmussen; P. R. Zimmerman; J. P. Greenberg; P. Mlddleton; Tao Wang

The concentrations of ozone, nitrogen oxides, and nonmethane hydrocarbons measured near the surface in a variety of urban, suburban, rural, and remote locations are analyzed and compared in order to elucidate the relationships between ozone, its photochemical precursors, and the sources of these precursors. While a large gradient is found among remote, rural, and urban/suburban nitrogen oxide concentrations, the total hydrocarbon reactivity in all continental locations is found to be comparable. Apportionment of the observed hydrocarbon species to mobile and stationary anthropogenic sources and biogenic sources suggests that present-day emission inventories for the United States underestimate the size of mobile emissions. The analysis also suggests a significant role for biogenic hydrocarbon emissions in many urban/suburban locations and a dominant role for these sources in rural areas of the eastern United States. As one moves from remote locations to rural locations and then from rural to urban/suburban locations, ozone and nitrogen oxide concentrations tend to increase in a consistent manner while total hydrocarbon reactivity does not.


Atmospheric Environment | 1994

Natural volatile organic compound emission rate estimates for U.S. woodland landscapes

Alex Guenther; P. R. Zimmerman; Mary C. Wildermuth

Volatile organic compound (VOC) emission rate factors are estimated for 49 tree genera based on a review of foliar emission rate measurements. Foliar VOC emissions are grouped into three categories: isoprene, monoterpenes and other VOCs. Typical emission rates at a leaf temperature of 30°C and a light intensity of 1000 μmol m−2 s−1 range from <0.1 to 70 μg C g−1 h−1 for isoprene, <0.1 to 3 μg C g−1 h−1 for monoterpenes, and < 0.5 to 5 μg C g−1 h−1 for other VOCs. Isoprene emission factors are given for biogenic emission models that incorporate canopy shading effects and thus require leaf-level emission rates and for emission models that do not include a canopy model and therefore require branch-level isoprene emission factors which already account for some shading. Landscape-level emission rates are estimated by combining emission rate factors determined for tree genera with species composition and foliar mass data. Landscape emission rate factors are determined for each of the 91 woodland landscapes in the high resolution (1.1 km) gridded land-cover database compiled by the EROS Data Center (EDC) from satellite and ancillary data. This database covers the entire contiguous United States of America. Landscape emission rates are also be determined using gridded tree distribution data, based on aerial photographs and ground measurements, such as that available in the U.S. Forest Service (USES) Easlwide Forest Inventory Database (EFID). Emission rates are reported for 41 of the 65 tree genera in the EFID including all of the most common genera. Total VOC emission rate factors for the 91 EDC woodland-cover types range from 0.8 to 11 mg C m−2h−1 at a standard condition of 30°C and 1000 μmol m−2s−1. These landscape factors are based on branch-level emission factors and thus already incorporate canopy shading effects. The estimated fluxes of isoprene and monoterpenes are in relatively good agreement with field measurements of area-averaged fluxes if accurate species composition data (e.g. from the EFID) are available. Total VOC emission rate estimates range from 0.8 to 4.3 mg C m−2h−1 for scrub woodlands and 2.2 to 11 mg C m−2h−1 for mixed deciduous/coniferous woodlands. The chemical composition of the VOC flux ranges from 8 to 91 isoprene, 1 to 56% for monoterpenes and 8 to 73% for other VOC. On an area-weighted basis, the U.S. average total VOC emission rate factor of 5.1 mg m−2h−1 for all woodlands is comprised of 58% isoprene, 18% monoterpenes and 24% other VOC. In comparison to previous estimates, these emission rates are generally higher for isoprene and lower for monoterpenes.


Environmental Science & Technology | 1994

Measurement of methane emissions from ruminant livestock using a sulfur hexafluoride tracer technique.

K. A. Johnson; Mark. Huyler; Hal Westberg; Brian K. Lamb; P. R. Zimmerman

The purpose of this paper is to describe a method for determining methane emission factors for cattle. The technique involves the direct measurement of methane emissions from livestock in their natural environment. A small permeation tube containing SF[sub 6] is placed in the cows rumen, and SF[sub 6] and CH[sub 4] concentrations are measured near the mouth and nostrils of the cow. The SF[sub 6] release provides a way to account for the dilution of gases near the animals mouth. The CH[sub 4] emission rate can be calculated from the known SF[sub 6] emission rate and the measured SF[sub 6] and CH[sub 4] concentrations. The tracer method described provides an easy means for acquiring a large methane emissions data base from domestic livestock. The low cost and simplicity should make it possible to monitor a large number of animals in countries throughout the world. An expanded data base of this type helps to reduce uncertainty in the ruminant contribution to the global methane budget. 18 refs., 3 figs., 3 tabs.


Science | 1987

Thunderstorms: An Important Mechanism in the Transport of Air Pollutants

Russell R. Dickerson; G. J. Huffman; Winston T. Luke; Linda J. Nunnermacker; Kenneth E. Pickering; A. C. D. Leslie; C. G. Lindsey; W. G. N. Slinn; T. J. Kelly; P. H. Daum; A. C. Delany; J. P. Greenberg; P. R. Zimmerman; J. F. Boatman; J. D. Ray; Donald H. Stedman

Acid deposition and photochemical smog are urban air pollution problems, and they remain localized as long as the sulfur, nitrogen, and hydrocarbon pollutants are confined to the lower troposphere (below about 1-kilometer altitude) where they are short-lived. If, however, the contaminants are rapidly transported to the upper troposphere, then their atmospheric residence times grow and their range of influence expands dramatically. Although this vertical transport ameliorates some of the effects of acid rain by diluting atmospheric acids, it exacerbates global tropospheric ozone production by redistributing the necessary nitrogen catalysts. Results of recent computer simulations suggest that thunderstorms are one means of rapid vertical transport. To test this hypothesis, several research aircraft near a midwestern thunderstrom measured carbon monoxide, hydrocarbons, ozone, and reactive nitrogen compounds. Their concentrations were much greater in the outflow region of the storm, up to 11 kilometers in altitude, than in surrounding air. Trace gas measurements can thus be used to track the motion of air in and around a cloud. Thunderstorms may transform local air pollution problems into regional or global atmospheric chemistry problems.


Oecologia | 1994

Environmental and developmental controls over the seasonal pattern of isoprene emission from aspen leaves

Russell K. Monson; Peter Harley; Marcy E. Litvak; Mary C. Wildermuth; Alex Guenther; P. R. Zimmerman; Ray Fall

Isoprene emission from plants represents one of the principal biospheric controls over the oxidative capacity of the continental troposphere. In the study reported here, the seasonal pattern of isoprene emission, and its underlying determinants, were studied for aspen trees growing in the Rocky Mountains of Colorado. The springtime onset of isoprene emission was delayed for up to 4 weeks following leaf emergence, despite the presence of positive net photosynthesis rates. Maximum isoprene emission rates were reached approximately 6 weeks following leaf emergence. During this initial developmental phase, isoprene emission rates were negatively correlated with leaf nitrogen concentrations. During the autumnal decline in isoprene emission, rates were positively correlated with leaf nitrogen concentration. Given past studies that demonstrate a correlation between leaf nitrogen concentration and isoprene emission rate, we conclude that factors other than the amount of leaf nitrogen determine the early-season initiation of isoprene emission. The late-season decline in isoprene emission rate is interpreted as due to the autumnal breakdown of metabolic machinery and loss of leaf nitrogen. In potted aspen trees, leaves that emerged in February and developed under cool, springtime temperatures did not emit isoprene until 23 days after leaf emergence. Leaves that emrged in July and developed in hot, midsummer temperatures emitted isoprene within 6 days. Leaves that had emerged during the cool spring, and had grown for several weeks without emitting isoprene, could be induced to emit isoprene within 2 h of exposure to 32°C. Continued exposure to warm temperatures resulted in a progressive increase in the isoprene emission rate. Thus, temperature appears to be an important determinant of the early season induction of isoprene emission. The seasonal pattern of isoprene emission was examined in trees growing along an elevational gradient in the Colorado Front Range (1829–2896 m). Trees at different elevations exhibited staggered patterns of bud-break and initiation of photosynthesis and isoprene emission in concert with the staggered onset of warm, springtime temperatures. The springtime induction of isoprene emission could be predicted at each of the three sites as the time after bud break required for cumulative temperatures above 0°C to reach approximately 400 degree days. Seasonal temperature acclimation of isoprene emission rate and photosynthesis rate was not observed. The temperature dependence of isoprene emission rate between 20 and 35°C could be accurately predicted during spring and summer using a single algorithm that describes the Arrhenius relationship of enzyme activity. From these results, it is concluded that the early season pattern of isoprene emission is controlled by prevailing temperature and its interaction with developmental processes. The late-season pattern is determined by controls over leaf nitrogen concentration, especially the depletion of leaf nitrogen during senescence. Following early-season induction, isoprene emission rates correlate with photosynthesis rates. During the season there is little acclimation to temperature, so that seasonal modeling simplifies to a single temperature-response algorithm.


Journal of Geophysical Research | 1996

Isoprene fluxes measured by enclosure, relaxed eddy accumulation, surface layer gradient, mixed layer gradient, and mixed layer mass balance techniques

Alex Guenther; W. Baugh; Kenneth J. Davis; Gary A. Hampton; Peter Harley; L. Klinger; Lee A. Vierling; P. R. Zimmerman; Eugene Allwine; Steve Dilts; Brian K. Lamb; Hal Westberg; Dennis D. Baldocchi; Chris Geron; Thomas Pierce

Isoprene fluxes were estimated using eight different measurement techniques at a forested site near Oak Ridge, Tennessee, during July and August 1992. Fluxes from individual leaves and entire branches were estimated with four enclosure systems, including one system that controls leaf temperature and light. Variations in isoprene emission with changes in light, temperature, and canopy depth were investigated with leaf enclosure measurements. Representative emission rates for the dominant vegetation in the region were determined with branch enclosure measurements. Species from six tree genera had negligible isoprene emissions, while significant emissions were observed for Quercus, Liquidambar, and Nyssa species. Above-canopy isoprene fluxes were estimated with surface layer gradients and relaxed eddy accumulation measurements from a 44-m tower. Midday net emission fluxes from the canopy were typically 3 to 5 mg C m−2 h−1, although net isoprene deposition fluxes of −0.2 to −2 mg C m−2 h−1 were occasionally observed in early morning and late afternoon. Above-canopy CO2 fluxes estimated by eddy correlation using either an open path sensor or a closed path sensor agreed within ±5%. Relaxed eddy accumulation estimates of CO2 fluxes were within 15% of the eddy correlation estimates. Daytime isoprene mixing ratios in the mixed layer were investigated with a tethered balloon sampling system and ranged from 0.2 to 5 ppbv, averaging 0.8 ppbv. The isoprene mixing ratios in the mixed layer above the forested landscape were used to estimate isoprene fluxes of 2 to 8 mg C m−2 h−1 with mixed layer gradient and mixed layer mass balance techniques. Total foliar density and dominant tree species composition for an approximately 8100 km2 region were estimated using high-resolution (30 m) satellite data with classifications supervised by ground measurements. A biogenic isoprene emission model used to compare flux measurements, ranging from leaf scale (10 cm2) to landscape scale (102 km2), indicated agreement to within ±25%, the uncertainty associated with these measurement techniques. Existing biogenic emission models use isoprene emission rate capacities that range from 14.7 to 70 μg C g−1 h−1 (leaf temperature of 30°C and photosynthetically active radiation of 1000 μmol m−2 s−1) for oak foliage. An isoprene emission rate capacity of 100 μg C g−1 h−1 for oaks in this region is more realistic and is recommended, based on these measurements.


Journal of Geophysical Research | 1996

Estimates of regional natural volatile organic compound fluxes from enclosure and ambient measurements

Alex Guenther; P. R. Zimmerman; L. Klinger; James A Greenberg; Chris Ennis; Kenneth J. Davis; Walt Pollock; Hal Westberg; Gene Allwine; Chris Geron

Natural volatile organic compound (VOC) emissions were investigated at two forested sites in the southeastern United States. A variety of VOC compounds including methanol, 2-methyl-3-buten-2-ol, 6-methyl-5-hepten-2-one, isoprene and 15 monoterpenes were emitted from vegetation at these sites. Diurnal variations in VOC emissions were observed and related to light and temperature. Variations in isoprene emission from individual branches are well correlated with light intensity and leaf temperature while variations in monoterpene emissions can be explained by variations in leaf temperature alone. Isoprene emission rates for individual leaves tend to be about 75% higher than branch average emission rates due to shading on the lower leaves of a branch. Average daytime mixing ratios of 13.8 and 6.6 ppbv C isoprene and 5.0 and 4.5 ppbv C monoterpenes were observed at heights between 40 m and 1 km above ground level the two sites. Isoprene and monoterpenes account for 30% to 40% of the total carbon in the ambient non-methane VOC quantified in the mixed layer at these sites and over 90% of the VOC reactivity with OH. Ambient mixing ratios were used to estimate isoprene and monoterpene fluxes by applying box model and mixed-layer gradient techniques. Although the two techniques estimate fluxes averaged over different spatial scales, the average fluxes calculated by the two techniques agree within a factor of two. The ambient mixing ratios were used to evaluate a biogenic VOC emission model that uses field measurements of plant species composition, remotely sensed vegetation distributions, leaf level emission potentials determined from vegetation enclosures, and light and temperature dependent emission activity factors. Emissions estimated for a temperature of 30°C and above canopy photosynthetically active radiation flux of 1000 μmol m−2 s−1 are around 4 mg C m−2 h−1 of isoprene and 0.7 mg C m−2 h−1 of monoterpenes at the ROSE site in western Alabama and 3 mg C m−2 h−1 of isoprene and 0.5 mg C m−2 h−1 of monoterpenes at the SOS-M site in eastern Georgia. Isoprene and monoterpene emissions based on land characteristics data and emission enclosure measurements are within a factor of two of estimates based on ambient measurements in most cases. This represents reasonable agreement due to the large uncertainties associated with these models and because the observed differences are at least partially due to differences in the size and location of the source region (“flux footprint”) associated with each flux estimate.

Collaboration


Dive into the P. R. Zimmerman's collaboration.

Top Co-Authors

Avatar

Alex Guenther

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

J. P. Greenberg

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

L. Klinger

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Peter Harley

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hal Westberg

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Brian K. Lamb

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Chris Geron

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Christopher D. Geron

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Karen Updegraff

South Dakota School of Mines and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge