P. Sotiropoulou
University of Patras
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by P. Sotiropoulou.
Computational and Mathematical Methods in Medicine | 2015
V. Koukou; N. Martini; C. Michail; P. Sotiropoulou; Christina Fountzoula; N. Kalyvas; I. Kandarakis; Georgios C. Nikiforidis; G. Fountos
Dual energy methods can suppress the contrast between adipose and glandular tissues in the breast and therefore enhance the visibility of calcifications. In this study, a dual energy method based on analytical modeling was developed for the detection of minimum microcalcification thickness. To this aim, a modified radiographic X-ray unit was considered, in order to overcome the limited kVp range of mammographic units used in previous DE studies, combined with a high resolution CMOS sensor (pixel size of 22.5 μm) for improved resolution. Various filter materials were examined based on their K-absorption edge. Hydroxyapatite (HAp) was used to simulate microcalcifications. The contrast to noise ratio (CNRtc) of the subtracted images was calculated for both monoenergetic and polyenergetic X-ray beams. The optimum monoenergetic pair was 23/58 keV for the low and high energy, respectively, resulting in a minimum detectable microcalcification thickness of 100 μm. In the polyenergetic X-ray study, the optimal spectral combination was 40/70 kVp filtered with 100 μm cadmium and 1000 μm copper, respectively. In this case, the minimum detectable microcalcification thickness was 150 μm. The proposed dual energy method provides improved microcalcification detectability in breast imaging with mean glandular dose values within acceptable levels.
Journal of Physics: Conference Series | 2015
N. Martini; V. Koukou; C. Michail; P. Sotiropoulou; N. Kalyvas; I. Kandarakis; G. Nikiforidis; G. Fountos
Breast microcalcifications are mainly composed of calcite (CaCO3), calcium oxalate (CaC2O4) and apatite (a calcium-phosphate mineral form). Any pathologic alteration (carcinogenesis) of the breast may produce apatite. In the present simulation study, an analytical model was implemented in order to distinguish malignant and non-malignant lesions. The Calcium/Phosphorus (Ca/P) mass ratio and the standard deviation (SD) of the calcifications were calculated. The size of the calcifications ranged from 100 to 1000 μm, in 50 μm increments. The simulation was performed for hydroxyapatite, calcite and calcium oxalate calcifications. The optimum pair of energies for all calcifications was 22keV and 50keV. Hydroxyapatite and calcite calcifications were sufficiently characterized through their distinct confidence interval (99.7%, 3SD) values for calcifications sizes above 500 μm, while the corresponding sizes for hydroxyapatite and calcium oxalate characterization were found above 250 μm. Initial computer simulation results indicate that the proposed method can be used in breast cancer diagnosis, reducing the need for invasive methods, such as biopsies.
Archive | 2014
P. Sotiropoulou; G. Fountos; N. Martini; V. Koukou; C. Michail; I. Valais; I. Kandarakis; G. Nikiforidis
The aim of the present study was the optimization of dual energy x-ray spectra through the estimation of the Coefficient of Variation (CV). The simulation of monoenergetic x-ray beams provides the optimum dual energy pairs minimizing the CV. Single and double exposure methods were used in order to obtain polyenergetic spectra. K-edge filtering was applied to provide quasi-monochromatic beams with equal mean energy to the corresponding monochromatic ones. Furthermore the optimization for the obtained incident spectra was based on a limiting number of counts equal to 105 (CVinc≤0.3%) with minimum peak spectral width. The optimum results for single exposure method obtained from 80kVp with added beam filtration of 850μm Ce achieving a CV value of 0.21%. Whereas for the double exposure technique a CV value of 0.68% was achieved using 50 and 120kVp with added filtration of 400μm Ce and 1000μm Yb respectively. These CV values indicate that this method can be used as a diagnostic tool of great importance in bone quality assessment.
Applied Radiation and Isotopes | 2016
P. Sotiropoulou; G. Fountos; N. Martini; V. Koukou; C. Michail; I. Kandarakis; George Nikiforidis
An X-ray dual energy (XRDE) method was examined, using polynomial nonlinear approximation of inverse functions for the determination of the bone Calcium-to-Phosphorus (Ca/P) mass ratio. Inverse fitting functions with the least-squares estimation were used, to determine calcium and phosphate thicknesses. The method was verified by measuring test bone phantoms with a dedicated dual energy system and compared with previously published dual energy data. The accuracy in the determination of the calcium and phosphate thicknesses improved with the polynomial nonlinear inverse function method, introduced in this work, (ranged from 1.4% to 6.2%), compared to the corresponding linear inverse function method (ranged from 1.4% to 19.5%).
Journal of Physics: Conference Series | 2015
V. Koukou; G. Fountos; N. Martini; P. Sotiropoulou; C. Michail; N. Kalyvas; I. Valais; A. Bakas; E. Kounadi; I. Kandarakis; G. Nikiforidis
Dual energy mammography has the ability to improve the detection of microcalcifications leading to early diagnosis of breast cancer. In this simulation study, a prototype dual energy mammography system, using a CMOS based imaging detector with different X-ray spectra, was modeled. The device consists of a 33.91 mg/cm2 Gd2O2S:Tb scintillator screen, placed in direct contact with the sensor, with a pixel size of 22.5 μm. Various filter materials and tube voltages of a Tungsten (W) anode for both the low and high energy were examined. The selection of the filters applied to W spectra was based on their K- edges (K-edge filtering). Hydroxyapatite (HAp) was used to simulate microcalcifications. Calcification signal-to-noise ratio (SNRtc) was calculated for entrance surface dose within the acceptable levels of conventional mammography. Optimization was based on the maximization of SNRtc while minimizing the entrance dose. The best compromise between SNRtc value and dose was provided by a 35kVp X-ray spectrum with added beam filtration of 100μm Pd and a 70kVp Yb filtered spectrum of 800 μm for the low and high energy, respectively. Computer simulation results show that a SNRtc value of 3.6 can be achieved for a calcification size of 200 μm. Compared with previous studies, this method can improve detectability of microcalcifications.
Journal of Physics: Conference Series | 2015
P. Sotiropoulou; V. Koukou; N. Martini; C Michail; E Kounadi; I Kandarakis; G. Nikiforidis; G Fountos
In this study an analytical approximation of dual-energy inverse functions is presented for the estimation of the calcium-to-phosphorous (Ca/P) mass ratio, which is a crucial parameter in bone health. Bone quality could be examined by the X-ray dual-energy method (XDEM), in terms of bone tissue material properties. Low- and high-energy, log- intensity measurements were combined by using a nonlinear function, to cancel out the soft tissue structures and generate the dual energy bone Ca/P mass ratio. The dual-energy simulated data were obtained using variable Ca and PO4 thicknesses on a fixed total tissue thickness. The XDEM simulations were based on a bone phantom. Inverse fitting functions with least-squares estimation were used to obtain the fitting coefficients and to calculate the thickness of each material. The examined inverse mapping functions were linear, quadratic, and cubic. For every thickness, the nonlinear quadratic function provided the optimal fitting accuracy while requiring relative few terms. The dual-energy method, simulated in this work could be used to quantify bone Ca/P mass ratio with photon-counting detectors.
Journal of Physics: Conference Series | 2015
V. Koukou; N. Martini; C. Michail; P. Sotiropoulou; N. Kalyvas; I. Kandarakis; G. Nikiforidis; G. Fountos
In this simulation study, an analytical model was used in order to determine the optimal acquisition parameters for a dual energy breast imaging system. The modeled detector system, consisted of a 33.91mg/cm2 Gd2O2S:Tb scintillator screen, placed in direct contact with a high resolution CMOS sensor. Tungsten anode X-ray spectra, filtered with various filter materials and filter thicknesses were examined for both the low- and high-energy beams, resulting in 3375 combinations. The selection of these filters was based on their K absorption edge (K-edge filtering). The calcification signal-to-noise ratio (SNRtc) and the mean glandular dose (MGD) were calculated. The total mean glandular dose was constrained to be within acceptable levels. Optimization was based on the maximization of the SNRtc/MGD ratio. The results showed that the optimum spectral combination was 40kVp with added beam filtration of 100 μm Ag and 70kVp Cu filtered spectrum of 1000 μm for the low- and high-energy, respectively. The minimum detectable calcification size was 150 μm. Simulations demonstrate that this dual energy X-ray technique could enhance breast calcification detection.
Journal of Physics: Conference Series | 2015
N. Martini; V. Koukou; N. Kalyvas; P. Sotiropoulou; C. Michail; I. Valais; A. Bakas; I. Kandarakis; G. Nikiforidis; G. Fountos
Dual Energy imaging is a promising method for visualizing masses and microcalcifications in digital mammography. The advent of two X-ray energies (low and high) requires a suitable detector. The scope of this work is to determine optimum detector parameters for dual energy applications. The detector was modeled through the linear cascaded (LCS) theory. It was assumed that a phosphor material was coupled to a CMOS photodetector (indirect detection). The pixel size was 22.5 μm. The phosphor thickness was allowed to vary between 20mg/cm2 and 160mg/cm2 The phosphor materials examined where Gd2O2S:Tb and Gd2O2S:Eu. Two Tungsten (W) anode X-ray spectra at 35 kV (filtered with 100 μm Palladium (Pd)) and 70 kV (filtered with 800 pm Ytterbium (Yb)), corresponding to low and high energy respectively, were considered to be incident on the detector. For each combination the contrast- to-noise ratio (CNR) and the detector optical gain (DOG), showing the sensitivity of the detector, were calculated. The 40 mg/cm2 and 70 mg/cm2 Gd2O2S:Tb exhibited the higher DOG values for the low and high energy correspondingly. Higher CNR between microcalcification and mammary gland exhibited the 70mg/cm2 and the 100mg/cm2 Gd2O2S:Tb for the low and the high energy correspondingly.
Journal of Physics: Conference Series | 2015
N. Kalyvas; N. Martini; V. Koukou; C. Michail; P. Sotiropoulou; I. Valais; I. Kandarakis; G. Fountos
Dual Energy imaging is a promising method for visualizing masses and microcalcifications in digital mammography. Currently commercially available detectors may be suitable for dual energy mammographic applications. The scope of this work was to theoretically examine the performance of the Radeye CMOS digital indirect detector under three low- and high-energy spectral pairs. The detector was modeled through the linear system theory. The pixel size was equal to 22.5μm and the phosphor material of the detector was a 33.9 mg/cm2 Gd2O2S:Tb phosphor screen. The examined spectral pairs were (i) a 40kV W/Ag (0.01cm) and a 70kV W/Cu (0.1cm) target/filter combinations, (ii) a 40kV W/Cd (0.013cm) and a 70kV W/Cu (0.1cm) target/filter combinations and (iii) a 40kV W/Pd (0.008cm) and a 70kV W/Cu (0.1cm) target/filter combinations. For each combination the Detective Quantum Efficiency (DQE), showing the signal to noise ratio transfer, the detector optical gain (DOG), showing the sensitivity of the detector and the coefficient of variation (CV) of the detector output signal were calculated. The second combination exhibited slightly higher DOG (326 photons per X-ray) and lower CV (0.755%) values. In terms of electron output from the RadEye CMOS, the first two combinations demonstrated comparable DQE values; however the second combination provided an increase of 6.5% in the electron output.
Journal of Physics: Conference Series | 2015
P. Sotiropoulou; G. Fountos; N. Martini; V. Koukou; C. Michail; I. Valais; I. Kandarakis; G. Nikiforidis
Calcium (Ca) and Phosphorus (P) bone mass ratio has been identified as an important, yet underutilized, risk factor in osteoporosis diagnosis. The purpose of this simulation study is to investigate the use of effective or mean mass attenuation coefficient in Ca/P mass ratio estimation with the use of a dual-energy method. The investigation was based on the minimization of the accuracy of Ca/P ratio, with respect to the Coefficient of Variation of the ratio. Different set-ups were examined, based on the K-edge filtering technique and single X-ray exposure. The modified X-ray output was attenuated by various Ca/P mass ratios resulting in nine calibration points, while keeping constant the total bone thickness. The simulated data were obtained considering a photon counting energy discriminating detector. The standard deviation of the residuals was used to compare and evaluate the accuracy between the different dual energy set-ups. The optimum mass attenuation coefficient for the Ca/P mass ratio estimation was the effective coefficient in all the examined set-ups. The variation of the residuals between the different set-ups was not significant.