Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where P. T. O’Brien is active.

Publication


Featured researches published by P. T. O’Brien.


The Astrophysical Journal | 2006

Evidence for a canonical gamma-ray burst afterglow light curve in the Swift XRT data

John A. Nousek; C. Kouveliotou; Dirk Grupe; Kim L. Page; Jonathan Granot; Enrico Ramirez-Ruiz; Sandeep K. Patel; D. N. Burrows; Vanessa Mangano; S. D. Barthelmy; A. P. Beardmore; Sergio Campana; Milvia Capalbi; Guido Chincarini; G. Cusumano; A. Falcone; N. Gehrels; P. Giommi; Mike R. Goad; Olivier Godet; C. P. Hurkett; J. A. Kennea; A. Moretti; P. T. O’Brien; J. P. Osborne; Patrizia Romano; G. Tagliaferri; Alan A. Wells

We present new observations of the early X-ray afterglows of the first 27 gamma-ray bursts (GRBs) well observed by the Swift X-Ray Telescope (XRT). The early X-ray afterglows show a canonical behavior, where the light curve broadly consists of three distinct power-law segments: (1) an initial very steep decay (/t � � with 3P � 1 P5), followed by (2) a very shallow decay (0:5P � 2 P1:0), and finally (3) a somewhat steeper decay (1P � 3 P1:5). These power-law segments are separated by two corresponding break times, tbreak;1 P500 s and 10 3 sPtbreak;2P 10 4 s. On top of this canonical behavior, many events have superimposed X-ray flares, which are most likely caused by internal shocks due to long-lasting sporadic activity of the central engine, up to several hours after the GRB. We find that the initial steep decay is consistent with it being the tail of the prompt emission, from photons that are radiated at large angles relative to our line of sight. The first break in the light curve (tbreak;1) takes place when the forward shock emission becomes dominant, with the intermediate shallow flux decay (� 2) likely caused by the continuous energy injection into the external shock. When this energy injection stops, a second break is then observed in the light curve (tbreak;2). This energy injection increases the energy of the afterglow shock by at least a factor of f k4 and augments the already severe requirements for the efficiency of the prompt gamma-ray emission. Subject headingg gamma rays: bursts — radiation mechanisms: nonthermal


The Astrophysical Journal | 2006

The early x-ray emission from grbs

P. T. O’Brien; R. Willingale; Julian P. Osborne; Mike R. Goad; Kim L. Page; S. Vaughan; E. Rol; A. P. Beardmore; Olivier Godet; C. P. Hurkett; Alan A. Wells; Bing Zhang; Shiho Kobayashi; David N. Burrows; John A. Nousek; J. A. Kennea; A. Falcone; Dirk Grupe; Neil Gehrels; S. D. Barthelmy; John K. Cannizzo; J. R. Cummings; J. E. Hill; Hans A. Krimm; Guido Chincarini; Gianpiero Tagliaferri; Sergio Campana; A. Moretti; P. Giommi; Matteo Perri

We present observations of the early X-ray emission for a sample of 40 gamma-ray bursts (GRBs) obtained using the Swift satellite, for which the narrow-field instruments were pointed at the burst within 10 minutes of the trigger. Using data from the Burst Alert Telescope and the X-Ray Telescope, we show that the X-ray light curve can be well described by an exponential that relaxes into a power law, often with flares superimposed. The transition time between the exponential and the power law provides a physically defined timescale for the burst duration. In most bursts, the power law breaks to a shallower decay within the first hour, and a late emission hump is observed, which can last for many hours. In other GRBs the hump is weak or absent. The observed variety in the shape of the early X-ray light curve can be explained as a combination of three components: prompt emission from the central engine, afterglow, and the late hump. In this scenario, afterglow emission begins during or soon after the burst, and the observed shape of the X-ray light curve depends on the relative strengths of the emission due to the central engine and that of the afterglow. There is a strong correlation such that those GRBs with stronger afterglow components have brighter early optical emission. The late emission hump can have a total fluence equivalent to that of the prompt phase. GRBs with the strongest late humps have weak or no X-ray flares.


Science | 2011

A Possible Relativistic Jetted Outburst from a Massive Black Hole Fed by a Tidally Disrupted Star

Joshua S. Bloom; Dimitrios Giannios; Brian D. Metzger; S. Bradley Cenko; Daniel A. Perley; Nathaniel R. Butler; Nial R. Tanvir; Andrew J. Levan; P. T. O’Brien; Linda E. Strubbe; Fabio De Colle; Enrico Ramirez-Ruiz; William H. Lee; Sergei Nayakshin; Eliot Quataert; A. R. King; Antonino Cucchiara; James Guillochon; Geoffrey C. Bower; Andrew S. Fruchter; Adam N. Morgan; Alexander Jonathan Van Der Horst

A recent bright emission observed by the Swift satellite is due to the sudden accretion of a star onto a massive black hole. Gas accretion onto some massive black holes (MBHs) at the centers of galaxies actively powers luminous emission, but most MBHs are considered dormant. Occasionally, a star passing too near an MBH is torn apart by gravitational forces, leading to a bright tidal disruption flare (TDF). Although the high-energy transient Sw 1644+57 initially displayed none of the theoretically anticipated (nor previously observed) TDF characteristics, we show that observations suggest a sudden accretion event onto a central MBH of mass about 106 to 107 solar masses. There is evidence for a mildly relativistic outflow, jet collimation, and a spectrum characterized by synchrotron and inverse Compton processes; this leads to a natural analogy of Sw 1644+57 to a temporary smaller-scale blazar.


Science | 2011

An Extremely Luminous Panchromatic Outburst from the Nucleus of a Distant Galaxy

Andrew J. Levan; Nial R. Tanvir; S. B. Cenko; Daniel A. Perley; K. Wiersema; J. S. Bloom; Andrew S. Fruchter; A. de Ugarte Postigo; P. T. O’Brien; N. Butler; A. J. van der Horst; G. Leloudas; Adam N. Morgan; Kuntal Misra; Geoffrey C. Bower; J. Farihi; R. L. Tunnicliffe; Maryam Modjaz; Jeffrey M. Silverman; J. Hjorth; C. C. Thöne; A. Cucchiara; J. M. Castro Cerón; A. J. Castro-Tirado; J. A. Arnold; M. Bremer; Jean P. Brodie; Thomas L. Carroll; Michael C. Cooper; P. A. Curran

A recent bright emission observed by the Swift satellite is due to the sudden accretion of a star onto a massive black hole. Variable x-ray and γ-ray emission is characteristic of the most extreme physical processes in the universe. We present multiwavelength observations of a unique γ-ray–selected transient detected by the Swift satellite, accompanied by bright emission across the electromagnetic spectrum, and whose properties are unlike any previously observed source. We pinpoint the event to the center of a small, star-forming galaxy at redshift z = 0.3534. Its high-energy emission has lasted much longer than any γ-ray burst, whereas its peak luminosity was ∼100 times higher than bright active galactic nuclei. The association of the outburst with the center of its host galaxy suggests that this phenomenon has its origin in a rare mechanism involving the massive black hole in the nucleus of that galaxy.


The Astrophysical Journal | 2007

Testing the Standard Fireball Model of Gamma-Ray Bursts Using Late X-Ray Afterglows Measured by Swift

R. Willingale; P. T. O’Brien; J. P. Osborne; Olivier Godet; Kim L. Page; Mike R. Goad; D. N. Burrows; Bing Zhang; E. Rol; N. Gehrels; Guido Chincarini

We show that all X-ray decay curves of γ-ray bursts (GRBs) measured by Swift can be fitted using one or two components, both of which have exactly the same functional form comprised of an early falling exponential phase followed by a power-law decay. The first component contains the prompt γ-ray emission and the initial X-ray decay. The second component appears later, has a much longer duration, and is present for ≈80% of GRBs. It most likely arises from the external shock that eventually develops into the X-ray afterglow. In the remaining ≈20% of GRBs the initial X-ray decay of the first component fades more slowly than the second and dominates at late times to form an afterglow. The temporal decay parameters and γ/X-ray spectral indices derived for 107 GRBs are compared to the expectations of the standard fireball model including a search for possible jet breaks. For ~50% of GRBs the observed afterglow is in accord with the model, but for the rest the temporal and spectral indices do not conform to the expected closure relations and are suggestive of continued, late, energy injection. We identify a few possible jet breaks, but there are many examples where such breaks are predicted but are absent. The time Ta at which the exponential phase of the second component changes to a final power-law decay afterglow is correlated with the peak of the γ-ray spectrum, Epeak. This is analogous to the Ghirlanda relation, indicating that this time is in some way related to optically observed break times measured for pre-Swift bursts.


The Astrophysical Journal | 2007

The First Survey of X-Ray Flares from Gamma-Ray Bursts Observed by Swift: Temporal Properties and Morphology

Guido Chincarini; A. Moretti; Patrizia Romano; A. Falcone; David C. Morris; Judith Lea Racusin; Sergio Campana; S. Covino; C. Guidorzi; G. Tagliaferri; D. N. Burrows; Claudio Pagani; M. C. Stroh; Dirk Grupe; Milvia Capalbi; G. Cusumano; N. Gehrels; P. Giommi; V. La Parola; Vanessa Mangano; T. Mineo; John A. Nousek; P. T. O’Brien; Kim L. Page; Matteo Perri; E. Troja; R. Willingale; Bing Zhang

We present the first systematic investigation of the morphological and timing properties of flares in GRBs observed by Swift XRT. We consider a large sample drawn from all GRBs detected by Swift, INTEGRAL, and HETE-2 prior to 2006 January 31, which had an XRT follow-up and which showed significant flaring. Our sample of 33 GRBs includes long and short, at low and high redshift, and a total of 69 flares. The strongest flares occur in the early phases, with a clear anticorrelation between the flare peak intensity and the flare time of occurrence. Fitting each X-ray flare with a Gaussian model, we find that the mean ratio of the width and peak time is --> ? t/t = 0.13 ? 0.10, albeit with a large scatter. Late flares at times >2000 s have long durations, -->? t > 300 s, and can be very energetic compared to the underlying continuum. We further investigated whether there is a clear link between the number of pulses detected in the prompt phase by BAT and the number of X-ray flares detected by XRT, finding no correlation. However, we find that the distribution of intensity ratios between successive BAT prompt pulses and that between successive XRT flares is the same, an indication of a common origin for gamma-ray pulses and X-ray flares. All evidence indicates that flares are indeed related to the workings of the central engine and, in the standard fireball scenario, originate from internal shocks rather than external shocks. While all flares can be explained by long-lasting engine activity, 29/69 flares may also be explained by refreshed shocks. However, 10 can only be explained by prolonged activity of the central engine.


Nature | 2008

Broadband observations of the naked-eye gamma-ray burst GRB 080319B

Judith Lea Racusin; S. V. Karpov; Marcin Sokolowski; Jonathan Granot; Xue-Feng Wu; V. Pal’shin; S. Covino; A. J. van der Horst; S. R. Oates; Patricia Schady; R. J. E. Smith; J. R. Cummings; Rhaana L. C. Starling; Lech Wiktor Piotrowski; Bin-Bin Zhang; P. A. Evans; S. T. Holland; K. Malek; M. T. Page; L. Vetere; R. Margutti; C. Guidorzi; Atish Kamble; P. A. Curran; A. P. Beardmore; C. Kouveliotou; Lech Mankiewicz; Andrea Melandri; P. T. O’Brien; Kim L. Page

Long-duration γ-ray bursts (GRBs) release copious amounts of energy across the entire electromagnetic spectrum, and so provide a window into the process of black hole formation from the collapse of massive stars. Previous early optical observations of even the most exceptional GRBs (990123 and 030329) lacked both the temporal resolution to probe the optical flash in detail and the accuracy needed to trace the transition from the prompt emission within the outflow to external shocks caused by interaction with the progenitor environment. Here we report observations of the extraordinarily bright prompt optical and γ-ray emission of GRB 080319B that provide diagnostics within seconds of its formation, followed by broadband observations of the afterglow decay that continued for weeks. We show that the prompt emission stems from a single physical region, implying an extremely relativistic outflow that propagates within the narrow inner core of a two-component jet.


The Astrophysical Journal | 2007

Swift Observations of GRB 070110: An Extraordinary X-Ray Afterglow Powered by the Central Engine

E. Troja; G. Cusumano; P. T. O’Brien; Bing Zhang; Boris Sbarufatti; Vanessa Mangano; R. Willingale; Guido Chincarini; J. P. Osborne; F. E. Marshall; D. N. Burrows; Sergio Campana; N. Gehrels; C. Guidorzi; Hans A. Krimm; V. La Parola; En-Wei Liang; T. Mineo; A. Moretti; Kim L. Page; Patrizia Romano; G. Tagliaferri; Bin-Bin Zhang; M. J. Page; Patricia Schady

We present a detailed analysis of Swift multiwavelength observations of GRB 070110 and its remarkable afterglow. The early X-ray light curve, interpreted as the tail of the prompt emission, displays a spectral evolution already seen in other gamma-ray bursts. The optical afterglow shows a shallow decay up to similar to 2 days after the burst, which is not consistent with standard afterglow models. The most intriguing feature is a very steep decay in the X-ray flux at similar to 2 x 10(4) s after the burst, ending an apparent plateau. The abrupt drop of the X-ray light curve rules out an external shock as the origin of the plateau in this burst and implies long-lasting activity of the central engine. The temporal and spectral properties of the plateau phase point toward a continuous central engine emission rather than the episodic emission of X-ray flares. We suggest that the observed X-ray plateau is powered by a spinning-down central engine, possibly a millisecond pulsar, which dissipates energy at an internal radius before depositing energy into the external shock.


The Astrophysical Journal | 2006

SWIFT OBSERVATIONS OF THE X-RAY-BRIGHT GRB 050315

S. Vaughan; Mike R. Goad; A. P. Beardmore; P. T. O’Brien; Julian P. Osborne; Kim L. Page; S. D. Barthelmy; David N. Burrows; Sergio Campana; John K. Cannizzo; Milvia Capalbi; Guido Chincarini; J. R. Cummings; G. Cusumano; P. Giommi; Olivier Godet; J. E. Hill; Shiho Kobayashi; Pawan Kumar; V. La Parola; Andrew J. Levan; Vanessa Mangano; P. Meszaros; A. Moretti; David C. Morris; John A. Nousek; Claudio Pagani; David M. Palmer; Judith Lea Racusin; Patrizia Romano

This paper discusses Swift observations of the � -ray burst GRB 050315 (z ¼ 1:949) from 80 s to 10 days after the onset of the burst. The X-ray light curve displayed a steep early decay (t � 5 ) for � 200 s and several breaks. However, both the prompt hard X-ray/� -ray emission (observed by the BAT) and the first � 300 s of X-ray emission (observed bytheXRT)canbeexplainedbyexponentialdecays,withsimilardecayconstants.ExtrapolatingtheBATlightcurve into the XRT band suggests that the rapidly decaying, early X-ray emission was simply a continuation of the fading promptemission;thisstrongsimilaritybetweentheprompt � -rayandearlyX-rayemissionmayberelatedtothesimple temporal and spectral character of this X-ray–rich GRB. Theprompt (BAT) spectrum was steep down to � 15keVand appeared to continue through the XRT bandpass, implying a low peak energy, inconsistent with the Amati relation. Following the initial steep decline, the X-ray afterglow did not fade for � 1:2 ; 10 4 s, after which time it decayed with at emporal index of� � 0:7, followed by a second break at � 2:5 ; 10 5 s to a slope of � � 2. The apparent ‘‘plateau’’ in the X-raylight curve, after the early rapid decay, makes this one of the most extreme examples of the steep-flat-steep X-ray light curves revealed by Swift. If the second afterglow break is identified with a jet break, then the jet opening


The Astrophysical Journal | 2006

The Giant X-Ray Flare of GRB 050502B: Evidence for Late-Time Internal Engine Activity

A. Falcone; D. N. Burrows; Davide Lazzati; Sergio Campana; Shiho Kobayashi; Bing Zhang; P. Meszaros; Kim L. Page; J. A. Kennea; Patrizia Romano; Claudio Pagani; L. Angelini; A. P. Beardmore; Milvia Capalbi; Guido Chincarini; G. Cusumano; P. Giommi; Mike R. Goad; Olivier Godet; Dirk Grupe; J. E. Hill; V. La Parola; Vanessa Mangano; A. Moretti; John A. Nousek; P. T. O’Brien; Julian P. Osborne; Matteo Perri; Gianpiero Tagliaferri; Alan A. Wells

Until recently, X-ray flares during the afterglow of gamma-ray bursts (GRBs) were a rarely detected phenomenon; thus, their nature is unclear. During the afterglow of GRB 050502B, the largest X-ray flare ever recorded rose rapidly above the afterglow light curve detected by the Swift X-Ray Telescope. The peak flux of the flare was >500 times that of the underlying afterglow, and it occurred >12 minutes after the nominal prompt burst emission. The fluence of this X-ray flare, (1.0 ± 0.05) × 10-6 ergs cm-2 in the 0.2-10.0 keV energy band, exceeded the fluence of the nominal prompt burst. The spectra during the flare were significantly harder than those measured before and after the flare. Later in time, there were additional flux increases detected above the underlying afterglow, as well as a break in the afterglow light curve. All evidence presented below, including spectral and, particularly, timing information during and around the giant flare, suggests that this giant flare was the result of internal dissipation of energy due to late central engine activity, rather than an afterglow-related effect. We also find that the data are consistent with a second central engine activity episode, in which the ejecta is moving slower than that of the initial episode, causing the giant flare and then proceeding to overtake and refresh the afterglow shock, thus causing additional activity at even later times in the light curve.

Collaboration


Dive into the P. T. O’Brien's collaboration.

Top Co-Authors

Avatar

Kim L. Page

University of Leicester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mike R. Goad

University of Leicester

View shared research outputs
Top Co-Authors

Avatar

Shiho Kobayashi

Liverpool John Moores University

View shared research outputs
Researchain Logo
Decentralizing Knowledge