Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where P. van der Werf is active.

Publication


Featured researches published by P. van der Werf.


Publications of the Astronomical Society of the Pacific | 2010

The Herschel ATLAS

Stephen Anthony Eales; Loretta Dunne; D. L. Clements; A. Cooray; G. De Zotti; Simon Dye; R. J. Ivison; M. J. Jarvis; Guilaine Lagache; Steve Maddox; M. Negrello; S. Serjeant; M. A. Thompson; E. van Kampen; A. Amblard; Paola Andreani; M. Baes; A. Beelen; G. J. Bendo; Dominic J. Benford; Frank Bertoldi; James J. Bock; D. G. Bonfield; A. Boselli; C. Bridge; V. Buat; D. Burgarella; R. Carlberg; A. Cava; P. Chanial

The Herschel ATLAS is the largest open-time key project that will be carried out on the Herschel Space Observatory. It will survey 570 deg2 of the extragalactic sky, 4 times larger than all the other Herschel extragalactic surveys combined, in five far-infrared and submillimeter bands. We describe the survey, the complementary multiwavelength data sets that will be combined with the Herschel data, and the six major science programs we are undertaking. Using new models based on a previous submillimeter survey of galaxies, we present predictions of the properties of the ATLAS sources in other wave bands.


The Astrophysical Journal | 2003

A significant population of red, near-infrared-selected high-redshift galaxies

Marijn Franx; Ivo Labbé; Gregory Rudnick; P. G. van Dokkum; Emanuele Daddi; Natascha M. Foerster Schreiber; A. F. M. Moorwood; H.-W. Rix; H. J. A. Röttgering; A. van de Wel; P. van der Werf; L. van Starkenburg

We use very deep near-infrared photometry of the Hubble Deep Field-South taken with ISAAC on the Very Large Telescope to identify a population of high-redshift galaxies with rest-frame optical colors similar to those of nearby galaxies. The galaxies are chosen by their infrared colors Js-Ks > 2.3, aimed at selecting galaxies with redshifts above 2. When applied to our data set, we find 14 galaxies with Ks < 22.5, corresponding to a surface density of 3 ± 0.8 arcmin-2. The photometric redshifts all lie above 1.9, with a median of 2.6 and an rms of 0.7. The spectral energy distributions of these galaxies show a wide range. One is very blue in the rest-frame UV and satisfies the normal Lyman break criteria for high-redshift, star-forming galaxies. Others are quite red throughout the observed spectral range and are extremely faint in the optical, with a median V = 26.6. Hence, these galaxies would not be included in photometric samples based on optical ground-based data, and spectroscopic follow-up is difficult. The spectral energy distributions often show a prominent break, identified as the Balmer break or the 4000 A break. The median age is 1 Gyr when fitted with a constant star formation model with dust or 0.7 Gyr when fitted with a single burst model. Although significantly younger ages cannot be excluded when a larger range of models is allowed, the results indicate that these galaxies are among the oldest at these redshifts. The volume density to Ks = 22.5 is half that of Lyman break galaxies at z ≈ 3. Since the mass-to-light ratios of the red galaxies are likely to be higher, the stellar mass density is inferred to be comparable to that of Lyman break galaxies. These red galaxies may be the descendants of galaxies that started to form stars at very high redshifts, and they may evolve into the most massive galaxies at low redshift.


Science | 2010

The detection of a population of submillimeter-bright, strongly lensed galaxies

M. Negrello; R. Hopwood; G. De Zotti; A. Cooray; A. Verma; J. J. Bock; David T. Frayer; M. A. Gurwell; A. Omont; R. Neri; H. Dannerbauer; L. Leeuw; Elizabeth J. Barton; Jeff Cooke; S. Kim; E. da Cunha; G. Rodighiero; P. Cox; D. G. Bonfield; M. J. Jarvis; S. Serjeant; R. J. Ivison; Simon Dye; I. Aretxaga; David H. Hughes; E. Ibar; Frank Bertoldi; I. Valtchanov; Stephen Anthony Eales; Loretta Dunne

Through a Lens Brightly Astronomical sources detected in the submillimeter range are generally thought to be distant, dusty galaxies undergoing a vigorous burst of star formation. They can be detected because the dust absorbs the light from stars and reemits it at longer wavelengths. Their properties are still difficult to ascertain, however, because the combination of interference from dust and the low spatial resolution of submillimeter telescopes prevents further study at other wavelengths. Using data from the Herschel Space Telescope, Negrello et al. (p. 800) showed that by searching for the brightest sources in a wide enough area in the sky it was possible to detect gravitationally lensed submillimeter galaxies with nearly full efficiency. Gravitational lensing occurs when the light of an astronomical object is deflected by a foreground mass. This phenomenon increases the apparent brightness and angular size of the lensed objects, making it easier to study sources that would be otherwise too faint to probe. Data from the Herschel Space Observatory unveils distant, dusty galaxies invisible to optical telescopes. Gravitational lensing is a powerful astrophysical and cosmological probe and is particularly valuable at submillimeter wavelengths for the study of the statistical and individual properties of dusty star-forming galaxies. However, the identification of gravitational lenses is often time-intensive, involving the sifting of large volumes of imaging or spectroscopic data to find few candidates. We used early data from the Herschel Astrophysical Terahertz Large Area Survey to demonstrate that wide-area submillimeter surveys can simply and easily detect strong gravitational lensing events, with close to 100% efficiency.


Astronomy and Astrophysics | 2010

Black hole accretion and star formation as drivers of gas excitation and chemistry in Markarian 231

P. van der Werf; Kate Gudrun Isaak; R. Meijerink; Marco Spaans; Adam John Rykala; T. Fulton; A. F. Loenen; F. Walter; A. Weiß; Lee Armus; J. Fischer; F. P. Israel; A. I. Harris; Sylvain Veilleux; C. Henkel; G. Savini; S. Lord; H. A. Smith; E. González-Alfonso; David A. Naylor; Susanne Aalto; V. Charmandaris; K. M. Dasyra; A. S. Evans; Yu Gao; T. R. Greve; R. Güsten; C. Kramer; J. Martin-Pintado; Joseph M. Mazzarella

We present a full high resolution SPIRE FTS spectrum of the nearby ultraluminous infrared galaxy Mrk 231. In total 25 lines are detected, including CO J = 5-4 through J = 13-12, 7 rotational lines of H2O, 3 of OH+ and one line each of H2O+, CH+, and HF. We find that the excitation of the CO rotational levels up to J = 8 can be accounted for by UV radiation from star formation. However, the approximately flat luminosity distribution of the CO lines over the rotational ladder above J = 8 requires the presence of a separate source of excitation for the highest CO lines. We explore X-ray heating by the accreting supermassive black hole in Mrk 231 as a source of excitation for these lines, and find that it can reproduce the observed luminosities. We also consider a model with dense gas in a strong UV radiation field to produce the highest CO lines, but find that this model strongly overpredicts the hot dust mass in Mrk 231. Our favoured model consists of a star forming disk of radius 560 pc, containing clumps of dense gas exposed to strong UV radiation, dominating the emission of CO lines up to J = 8. X-rays from the accreting supermassive black hole in Mrk 231 dominate the excitation and chemistry of the inner disk out to a radius of 160 pc, consistent with the X-ray power of the AGN in Mrk 231. The extraordinary luminosity of the OH+ and H2O+ lines reveals the signature of X-ray driven excitation and chemistry in this region.


The Astrophysical Journal | 2007

NICMOS Imaging of DRGs in the HDF-S: A Relation between Star Formation and Size at z ~ 2.5

A. Zirm; A. van der Wel; Marijn Franx; Ivo Labbé; Ignacio Trujillo; P. G. van Dokkum; Sune Toft; E. Daddi; G. Rudnick; H.-W. Rix; H. J. A. Röttgering; P. van der Werf

We present deep, high angular-resolution HST NICMOS imaging in the Hubble Deep Field South (HDF-S), focusing on a subset of 14 distant red galaxies (DRGs) at z ~ 2.5 that have been preselected to have J - K > 2.3. We find a clear trend between the rest-frame optical sizes of these sources and their luminosity-weighted stellar ages as inferred from their broadband spectral energy distributions (SEDs). Galaxies whose SEDs are consistent with being dusty and actively star-forming generally show extended morphologies in the NICMOS images (re 2 kpc), while the five sources that are not vigorously forming stars are extremely compact (re 1 kpc). This trend suggests a direct link between the mean ages of the stars and the size and density of the galaxies and supports the conjecture that early events quench star formation and leave compact remnants. Furthermore, the compact galaxies have stellar surface mass densities that exceed those of local galaxies by more than an order of magnitude. The existence of such massive dense galaxies presents a problem for models of early-type galaxy formation and evolution. Larger samples of DRGs and higher spatial resolution imaging will allow us to determine the universality of the results presented here for a small sample.


Monthly Notices of the Royal Astronomical Society | 2011

The LABOCA survey of the Extended Chandra Deep Field-South: a photometric redshift survey of submillimetre galaxies

J. L. Wardlow; Ian Smail; K. E. K. Coppin; D. M. Alexander; W. N. Brandt; A. L. R. Danielson; B. Luo; A. M. Swinbank; Frederick M. Walter; A. Weiss; Y. Q. Xue; Stefano Zibetti; Frank Bertoldi; A. D. Biggs; Sydney Chapman; H. Dannerbauer; James Dunlop; Eric Gawiser; R. J. Ivison; Kirsten Kraiberg Knudsen; A. Kovács; Cedric G. Lacey; K. M. Menten; N. Padilla; Hans-Walter Rix; P. van der Werf

We derive photometric redshifts from 17-band optical to mid-infrared photometry of 78 robust radio, 24-mu m and Spitzer IRAC counterparts to 72 of the 126 submillimetre galaxies (SMGs) selected at 870 mu m by LABOCA observations in the Extended Chandra Deep Field-South (ECDF-S). We test the photometric redshifts of the SMGs against the extensive archival spectroscopy in the ECDF-S. The median photometric redshift of identified SMGs is z = 2.2 +/- 0.1, the standard deviation is sigma(z) = 0.9 and we identify 11 (similar to 15 per cent) high-redshift (z >= 3) SMGs. A statistical analysis of sources in the error circles of unidentified SMGs identifies a population of possible counterparts with a redshift distribution peaking at z = 2.5 +/- 0.2, which likely comprises similar to 60 per cent of the unidentified SMGs. This confirms that the bulk of the undetected SMGs are coeval with those detected in the radio/mid-infrared. We conclude that at most similar to 15 per cent of all the SMGs are below the flux limits of our IRAC observations and thus may lie at z greater than or similar to 3 and hence at most similar to 30 per cent of all SMGs have z greater than or similar to 3. We estimate that the full S(870 mu m) > 4mJy SMG population has a median redshift of 2.5 +/- 0.5. In contrast to previous suggestions, we find no significant correlation between submillimetre flux and redshift. The median stellar mass of the SMGs derived from spectral energy distribution fitting is (9.1 +/- 0.5) x 10(10)M(circle dot) although we caution that the uncertainty in the star formation histories results in a factor of similar to 5 uncertainty in these stellarmasses. Using a single temperature modified blackbody fit with beta = 1.5, the median characteristic dust temperature of SMGs is 37.4 +/- 1.4K. The infrared luminosity function shows that SMGs at z = 2-3 typically have higher far-infrared luminosities and luminosity density than those at z = 1-2. This is mirrored in the evolution of the star formation rate density (SFRD) for SMGs which peaks at z similar to 2. The maximum contribution of bright SMGs to the global SFRD (similar to 5 per cent for SMGs with S(870 mu m) greater than or similar to 4mJy or similar to 50 per cent extrapolated to SMGs with S(870 mu m) > 1mJy) also occurs at z similar to 2.


Monthly Notices of the Royal Astronomical Society | 2011

Herschel ⋆ -ATLAS: Rapid evolution of dust in galaxies over the last 5 billion years

Loretta Dunne; Haley Louise Gomez; E. da Cunha; S. Charlot; Simon Dye; Stephen Anthony Eales; Steve Maddox; K. Rowlands; D. J. B. Smith; Robbie Richard Auld; M. Baes; D. G. Bonfield; N. Bourne; S. Buttiglione; A. Cava; D. L. Clements; K. Coppin; A. Cooray; Aliakbar Dariush; G. De Zotti; Simon P. Driver; J. Fritz; J. E. Geach; R. Hopwood; E. Ibar; R. J. Ivison; M. J. Jarvis; Lee S. Kelvin; Enzo Pascale; Michael Pohlen

We present the first direct and unbiased measurement of the evolution of the dust mass function of galaxies over the past 5 billion years of cosmic history using data from the Science Demonstration Phase of the Herschel-Astrophysical Terahertz Large Area Survey (Herschel-ATLAS). The sample consists of galaxies selected at 250 m which have reliable counterparts from the Sloan Digital Sky Survey (SDSS) at z < 0.5, and contains 1867 sources. Dust masses are calculated using both a single-temperature grey-body model for the spectral energy distribution and also a model with multiple temperature components. The dust temperature for either model shows no trend with redshift. Splitting the sample into bins of redshift reveals a strong evolution in the dust properties of the most massive galaxies. At z= 0.4–0.5, massive galaxies had dust masses about five times larger than in the local Universe. At the same time, the dust-to-stellar mass ratio was about three to four times larger, and the optical depth derived from fitting the UV-sub-mm data with an energy balance model was also higher. This increase in the dust content of massive galaxies at high redshift is difficult to explain using standard dust evolution models and requires a rapid gas consumption time-scale together with either a more top-heavy initial mass function (IMF), efficient mantle growth, less dust destruction or combinations of all three. This evolution in dust mass is likely to be associated with a change in overall interstellar medium mass, and points to an enhanced supply of fuel for star formation at earlier cosmic epochs.


Monthly Notices of the Royal Astronomical Society | 2014

An ALMA survey of sub-millimetre galaxies in the extended chandra deep field south: The far-infrared properties of SMGs

A. M. Swinbank; J. M. Simpson; Ian Smail; C. M. Harrison; J. A. Hodge; A. Karim; F. Walter; D. M. Alexander; W. N. Brandt; C. De Breuck; E. da Cunha; S. C. Chapman; K. E. K. Coppin; A. L. R. Danielson; H. Dannerbauer; Roberto Decarli; T. R. Greve; R. J. Ivison; Kirsten Kraiberg Knudsen; Claudia del P. Lagos; E. Schinnerer; A. P. Thomson; J. L. Wardlow; A. Weiß; P. van der Werf

We exploit Atacama Large Millimeter Array (ALMA) 870 mu m observations of sub-millimetre sources in the Extended Chandra Deep Field South to investigate the far-infrared properties of high-redshift sub-millimetre galaxies (SMGs). Using the precisely located 870 mu m ALMA positions of 99 SMGs, together with 24 mu m and radio imaging, we deblend the Herschel/SPIRE imaging to extract their far-infrared fluxes and colours. The median redshifts for ALMA LESS (ALESS) SMGs which are detected in at least two SPIRE bands increases with wavelength of the peak in their spectral energy distributions (SEDs), with z = 2.3 +/- 0.2, 2.5 +/- 0.3 and 3.5 +/- 0.5 for the 250, 350 and 500 mu m peakers, respectively. 34 ALESS SMGs do not have a >3 sigma counterpart at 250, 350 or 500 mu m. These galaxies have a median photometric redshift derived from the rest-frame UV-mid-infrared SEDs of z = 3.3 +/- 0.5, which is higher than the full ALESS SMG sample; z = 2.5 +/- 0.2. We estimate the far-infrared luminosities and characteristic dust temperature of each SMG, deriving L-IR = (3.0 +/- 0.3) x 10(12) L-circle dot (SFR = 300 +/- 30 M-circle dot yr(-1)) and T-d = 32 +/- 1 K. The characteristic dust temperature of these high-redshift SMGs is Delta T-d = 3-5K lower than comparably luminous galaxies at z = 0, reflecting the more extended star formation in these systems. We show that the contribution of S-870 mu m >= 1 mJy SMGs to the cosmic star formation budget is 20 per cent of the total over the redshift range z similar to 1-4. Adopting an appropriate gas-to-dust ratio, we estimate a typical molecular mass of the ALESS SMGs of M-H2 = (4.2 +/- 0.4) x 10(10) M-circle dot. Finally, we show that SMGs with S-870 mu m > 1 mJy (L-IR greater than or similar to 10(12) L-circle dot) contain similar to 10 per cent of the z similar to 2 volume-averaged H-2 mass density.


Monthly Notices of the Royal Astronomical Society | 2013

An ALMA survey of submillimetre galaxies in the Extended Chandra Deep Field South: high-resolution 870 μm source counts

A. Karim; A. M. Swinbank; J. A. Hodge; Ian Smail; F. Walter; A. D. Biggs; J. M. Simpson; A. L. R. Danielson; D. M. Alexander; Frank Bertoldi; C. De Breuck; Sydney Chapman; K. E. K. Coppin; H. Dannerbauer; A. C. Edge; T. R. Greve; R. J. Ivison; Kirsten Kraiberg Knudsen; K. M. Menten; E. Schinnerer; J. L. Wardlow; A. Weiß; P. van der Werf

We report the first counts of faint submillimetre galaxies (SMGs) in the 870-mu m band derived from arcsecond-resolution observations with the Atacama Large Millimeter Array (ALMA). We have used ALMA to map a sample of 122 870-mu m-selected submillimetre sources drawn from the 0 degrees.5x0 degrees.5 the Large Apex BOlometer CAmera (LABOCA) Extended Chandra Deep Field South submillimetre survey (LESS). These ALMA maps have an average depth of sigma 870(mu m) similar to 0.4 mJy, some approximately three times deeper than the original LABOCA survey and critically the angular resolution is more than an order of magnitude higher, FWHM of similar to 1.5 arcsec compared to similar to 19 arcsec for the LABOCA discovery map. This combination of sensitivity and resolution allows us to precisely pinpoint the SMGs contributing to the submillimetre sources from the LABOCA map, free from the effects of confusion. We show that our ALMA-derived SMG counts broadly agree with the submillimetre source counts from previous, lower resolution single-dish surveys, demonstrating that the bulk of the submillimetre sources are not caused by blending of unresolved SMGs. The difficulty which well-constrained theoretical models have in reproducing the high surface densities of SMGs, thus remains. However, our observations do show that all of the very brightest sources in the LESS sample, S-870 (mu m) greater than or similar to 12 mJy, comprise emission from multiple, fainter SMGs, each with 870-mu m fluxes of less than or similar to 9 mJy. This implies a natural limit to the star formation rate in SMGs of less than or similar to 10(3) M-circle dot yr(-1), which in turn suggests that the space densities of z > 1 galaxies with gas masses in excess of similar to 5 x 10(10) M-circle dot is <10(-5) Mpc(-3). We also discuss the influence of this blending on the identification and characterization of the SMG counterparts to these bright submillimetre sources and suggest that it may be responsible for previous claims that they lie at higher redshifts than fainter SMGs.


Monthly Notices of the Royal Astronomical Society | 2012

The LABOCA Survey of the Extended Chandra Deep Field South : Clustering of submillimetre galaxies

R. C. Hickox; J. L. Wardlow; Ian Smail; Adam D. Myers; D. M. Alexander; A. M. Swinbank; A. L. R. Danielson; John P. Stott; Sydney Chapman; K. E. K. Coppin; James Dunlop; Eric Gawiser; D. Lutz; P. van der Werf; A. Weiß

We present a measurement of the spatial clustering of submillimetre galaxies (SMGs) at z= 1-3. Using data from the 870μm Large APEX Bolometer Camera (LABOCA) submillimetre survey of the Extended Chandra Deep Field-South, we employ a novel technique to measure the cross-correlation between SMGs and galaxies, accounting for the full probability distributions for photometric redshifts of the galaxies. From the observed projected two-point cross-correlation function we derive the linear bias and characteristic dark matter halo masses for the SMGs. We detect clustering in the cross-correlation between SMGs and galaxies at the >4σ level. Accounting for the clustering of galaxies from their autocorrelation function, we estimate an autocorrelation length for SMGs of r o = 7.7 -2.3 +1.8 h -1 Mpc assuming a power-law slope γ= 1.8, and derive a corresponding dark matter halo mass of log(M halo[h -1M ⊙]) = 12.8 -0.5 +0.3. Based on the evolution of dark matter haloes derived from simulations, we show that that the z= 0 descendants of SMGs are typically massive (~2-3L *) elliptical galaxies residing in moderate- to high-mass groups (log(M halo[h -1M ⊙]) = 13.3 -0.5 +0.3). From the observed clustering we estimate an SMG lifetime of ~100Myr, consistent with lifetimes derived from gas consumption times and star formation time-scales, although with considerable uncertainties. The clustering of SMGs at z~ 2 is consistent with measurements for optically selected quasi-stellar objects (QSOs), supporting evolutionary scenarios in which powerful starbursts and QSOs occur in the same systems. Given that SMGs reside in haloes of characteristic mass ~6 × 10 12h -1M ⊙, we demonstrate that the redshift distribution of SMGs can be described remarkably well by the combination of two effects: the cosmological growth of structure and the evolution of the molecular gas fraction in galaxies. We conclude that the powerful starbursts in SMGs likely represent a short-lived but universal phase in massive galaxy evolution, associated with the transition between cold gas-rich, star-forming galaxies and passively evolving systems.

Collaboration


Dive into the P. van der Werf's collaboration.

Top Co-Authors

Avatar

R. J. Ivison

Aiken Technical College

View shared research outputs
Top Co-Authors

Avatar

A. Cooray

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. J. Michałowski

Adam Mickiewicz University in Poznań

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. De Zotti

International School for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. Ibar

Valparaiso University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge