Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where P. von der Gathen is active.

Publication


Featured researches published by P. von der Gathen.


Journal of Geophysical Research | 1998

In-situ measurements of stratospheric ozone depletion rates in the Arctic winter 1991/1992: A Lagrangian approach

M. Rex; P. von der Gathen; N. R. P. Harris; D. Lucic; B. M. Knudsen; G. O. Braathen; S. J. Reid; H. De Backer; H. Claude; R. Fabian; H. Fast; M Gil; E. Kyrö; I. S. Mikkelsen; Markku Rummukainen; H. G. J. Smit; J Stahelin; C. Varotsos; I. Zaitcev

A Lagrangian approach has been used to assess the degree of chemically induced ozone loss in the Arctic lower stratosphere in winter 1991/1992. Trajectory calculations are used to identify air parcels probed by two ozonesondes at different points along the trajectories. A statistical analysis of the measured differences in ozone mixing ratio and the time the air parcel spent in sunlight between the measurements provides the chemical ozone loss. Initial results were first described by von der Gathen et al. [1995]. Here we present a more detailed description of the technique and a more comprehensive discussion of the results. Ozone loss rates of up to 10 ppbv per sunlit hour (or 54 ppbv per day) were found inside the polar vortex on the 475 K potential temperature surface (about 19.5 km in altitude) at the end of January. The period of rapid ozone loss coincides and slightly lags a period when temperatures were cold enough for type I polar stratospheric clouds to form. It is shown that the ozone loss occurs exclusively during the sunlit portions of the trajectories. The time evolution and vertical distribution of the ozone loss rates are discussed.


Journal of Geophysical Research | 2002

Chemical depletion of Arctic ozone in winter 1999/2000

M. Rex; R. J. Salawitch; N. R. P. Harris; P. von der Gathen; G. O. Braathen; Astrid Schulz; H. Deckelmann; M. P. Chipperfield; Björn-Martin Sinnhuber; E. Reimer; R. Alfier; Richard M. Bevilacqua; K. W. Hoppel; M. Fromm; J. Lumpe; H. Küllmann; Armin Kleinböhl; H. Bremer; M. von König; K. Künzi; D. W. Toohey; H. Vömel; Erik Charles Richard; K. C. Aikin; H. Jost; Jeffery B. Greenblatt; M. Loewenstein; J. R. Podolske; C. R. Webster; G. J. Flesch

During Arctic winters with a cold, stable stratospheric circulation, reactions on the surface of polar stratospheric clouds (PSCs) lead to elevated abundances of chlorine monoxide (ClO) that, in the presence of sunlight, destroy ozone. Here we show that PSCs were more widespread during the 1999/2000 Arctic winter than for any other Arctic winter in the past two decades. We have used three fundamentally different approaches to derive the degree of chemical ozone loss from ozonesonde, balloon, aircraft, and satellite instruments. We show that the ozone losses derived from these different instruments and approaches agree very well, resulting in a high level of confidence in the results. Chemical processes led to a 70% reduction of ozone for a region ∼1 km thick of the lower stratosphere, the largest degree of local loss ever reported for the Arctic. The Match analysis of ozonesonde data shows that the accumulated chemical loss of ozone inside the Arctic vortex totaled 117 ± 14 Dobson units (DU) by the end of winter. This loss, combined with dynamical redistribution of air parcels, resulted in a 88 ± 13 DU reduction in total column ozone compared to the amount that would have been present in the absence of any chemical loss. The chemical loss of ozone throughout the winter was nearly balanced by dynamical resupply of ozone to the vortex, resulting in a relatively constant value of total ozone of 340 ± 50 DU between early January and late March. This observation of nearly constant total ozone in the Arctic vortex is in contrast to the increase of total column ozone between January and March that is observed during most years.


Journal of Geophysical Research | 2007

Validation of Aura Microwave Limb Sounder Ozone by ozonesonde and lidar measurements

Yibo Jiang; L. Froidevaux; Alyn Lambert; Nathaniel J. Livesey; William G. Read; J. W. Waters; Bojan Bojkov; Thierry Leblanc; I. S. McDermid; Sophie Godin-Beekmann; Mark J. Filipiak; R. S. Harwood; R. Fuller; W. H. Daffer; Brian J. Drouin; R. E. Cofield; D. T. Cuddy; R. F. Jarnot; B. W. Knosp; V. S. Perun; Michael J. Schwartz; W. V. Snyder; P. C. Stek; R. P. Thurstans; P. A. Wagner; M. Allaart; S. B. Andersen; G. E. Bodeker; B. Calpini; H. Claude

We present validation studies of MLS version 2.2 upper tropospheric and stratospheric ozone profiles using ozonesonde and lidar data as well as climatological data. Ozone measurements from over 60 ozonesonde stations worldwide and three lidar stations are compared with coincident MLS data. The MLS ozone stratospheric data between 150 and 3 hPa agree well with ozonesonde measurements, within 8% for the global average. MLS values at 215 hPa are biased high compared to ozonesondes by A`20% at middle to high latitude, although there is a lot of variability in this altitude region. Comparisons between MLS and ground-based lidar measurements from Mauna Loa, Hawaii, from the Table Mountain Facility, California, and from the Observatoire de Haute-Provence, France, give very good agreement, within A`5%, for the stratospheric values. The comparisons between MLS and the Table Mountain Facility tropospheric ozone lidar show that MLS data are biased high by A`30% at 215 hPa, consistent with that indicated by the ozonesonde data. We obtain better global average agreement between MLS and ozonesonde partial column values down to 215 hPa, although the average MLS values at low to middle latitudes are higher than the ozonesonde values by up to a few percent. MLS v2.2 ozone data agree better than the MLS v1.5 data with ozonesonde and lidar measurements. MLS tropical data show the wave one longitudinal pattern in the upper troposphere, with similarities to the average distribution from ozonesondes. High upper tropospheric ozone values are also observed by MLS in the tropical Pacific from June to November.


Journal of Atmospheric Chemistry | 1999

Chemical Ozone Loss in the Arctic Winter 1994/95 as Determined by the Match Technique

M. Rex; P. von der Gathen; G. O. Braathen; N. R. P. Harris; E. Reimer; A. Beck; R. Alfier; R. Krüger-Carstensen; M. P. Chipperfield; H. De Backer; Dimitris Balis; F. O'Connor; H. Dier; V. Dorokhov; H. Fast; A. Gamma; M. Gil; E. Kyrö; Z. Litynska; I. S. Mikkelsen; M. J. Molyneux; G. Murphy; S. J. Reid; Markku Rummukainen; C. Zerefos

The chemically induced ozone loss inside the Arctic vortex during the winter 1994/95 has been quantified by coordinated launches of over 1000 ozonesondes from 35 stations within the Match 94/95 campaign. Trajectory calculations, which allow diabatic heating or cooling, were used to trigger the balloon launches so that the ozone concentrations in a large number of air parcels are each measured twice a few days apart. The difference in ozone concentration is calculated for each pair and is interpreted as a change caused by chemistry. The data analysis has been carried out for January to March between 370 K and 600 K potential temperature. Ozone loss along these trajectories occurred exclusively during sunlit periods, and the periods of ozone loss coincided with, but slightly lagged, periods where stratospheric temperatures were low enough for polar stratospheric clouds to exist. Two clearly separated periods of ozone loss show up. Ozone loss rates first peaked in late January with a maximum value of 53 ppbv per day (1.6 % per day) at 475 K and faster losses higher up. Then, in mid-March ozone loss rates at 475 K reached 34 ppbv per day (1.3 % per day), faster losses were observed lower down and no ozone loss was found above 480 K during that period. The ozone loss in hypothetical air parcels with average diabetic descent rates has been integrated to give an accumulated loss through the winter. The most severe depletion of 2.0 ppmv (60 %) took place in air that was at 515 K on 1 January and at 450 K on 20 March. Vertical integration over the levels from 370 K to 600 K gives a column loss rate, which reached a maximum value of 2.7 Dobson Units per day in mid-March. The accumulated column loss between 1 January and 31 March was found to be 127 DU (∼36 %).


Geophysical Research Letters | 2000

Large loss of total ozone during the Arctic winter of 1999/2000

Björn-Martin Sinnhuber; M. P. Chipperfield; S. Davies; J. P. Burrows; K.-U. Eichmann; M. Weber; P. von der Gathen; M. Guirlet; G. A. Cahill; Adrian M. Lee; J. A. Pyle

Three-dimensional model calculations are used together with total ozone observations from the Global Ozone Monitoring Experiment (GOME) and ozone sonde measurements at Ny-Alesund, Spitsbergen to quantify the chemical ozone loss inside the Arctic polar vortex in winter 1999/2000. GOME shows March 2000 mean Arctic total ozone values of 365 DU, about 100 DU less than the 1980-1989 mean from TOMS data, well reproduced by the model calculations. A comparison of the modeled ozone with a passive ozone tracer and ozone sonde observations at Ny-Alesund shows that by the end of March 2000 about 2.5 ppmv of ozone are chemically depleted in the lower stratosphere, corresponding to more than 70% ozone loss. At the same time, the inferred loss in total ozone inside or at the edge of the polar vortex is between 90 and 140 DU. The large ongoing loss during March 2000 is likely to be due to widespread denitrification, which maintains high chlorine activation during this period.


Journal of Geophysical Research | 2007

A trajectory-based estimate of the tropospheric ozone column using the residual method

Mark R. Schoeberl; J. R. Ziemke; B. Bojkov; Nathaniel J. Livesey; B. Duncan; Susan E. Strahan; L. Froidevaux; S. S. Kulawik; Pawan K. Bhartia; S. Chandra; Pieternel F. Levelt; Jacquelyn C. Witte; Anne M. Thompson; E. Cuevas; A. Redondas; David W. Tarasick; J. Davies; G. E. Bodeker; Georg Hansen; Bryan J. Johnson; Samuel J. Oltmans; H. Vömel; M. Allaart; H. Kelder; M. J. Newchurch; Sophie Godin-Beekmann; Gérard Ancellet; H. Claude; S. B. Andersen; E. Kyrö

We estimate the tropospheric column ozone using a forward trajectory model to increase the horizontal resolution of the Aura Microwave Limb Sounder (MLS) derived stratospheric column ozone. Subtracting the MLS stratospheric column from Ozone Monitoring Instrument total column measurements gives the trajectory enhanced tropospheric ozone residual (TTOR). Because of different tropopause definitions, we validate the basic residual technique by computing the 200-hPa-to-surface column and comparing it to the same product from ozonesondes and Tropospheric Emission Spectrometer measurements. Comparisons show good agreement in the tropics and reasonable agreement at middle latitudes, but there is a persistent low bias in the TTOR that may be due to a slight high bias in MLS stratospheric column. With the improved stratospheric column resolution, we note a strong correlation of extratropical tropospheric ozone column anomalies with probable troposphere-stratosphere exchange events or folds. The folds can be identified by their colocation with strong horizontal tropopause gradients. TTOR anomalies due to folds may be mistaken for pollution events since folds often occur in the Atlantic and Pacific pollution corridors. We also compare the 200-hPa-to-surface column with Global Modeling Initiative chemical model estimates of the same quantity. While the tropical comparisons are good, we note that chemical model variations in 200-hPa-to-surface column at middle latitudes are much smaller than seen in the TTOR.


Journal of Geophysical Research | 2001

Arctic Ozone Loss in Threshold Conditions: Match Observations in 1997/1998 and 1998/1999

A. Schulz; M. Rex; N. R. P. Harris; G. O. Braathen; E. Reimer; R. Alfier; I. Kilbane-Dawe; S. Eckermann; M. Allaart; M. Alpers; B. R. Bojkov; J. Cisneros; H. Claude; E. Cuevas; J. Davies; H. De Backer; H. Dier; V. Dorokhov; H. Fast; S. Godin; Bryan Jay Johnson; B. Kois; Yutaka Kondo; E. Kosmidis; E. Kyrö; Z. Litynska; I. S. Mikkelsen; M. J. Molyneux; G. Murphy; T. Nagai

Chemical ozone loss rates inside the Arctic polar vortex were determined in early 1998 and early 1999 by using the Match technique based on coordinated ozonesonde measurements. These two winters provide the only opportunities in recent years to investigate chemical ozone loss in a warm Arctic vortex under threshold conditions, i.e., where the preconditions for chlorine activation, and hence ozone destruction, only occurred occasionally. In 1998, results were obtained in January and February between 410 and 520 K. The overall ozone loss was observed to be largely insignificant, with the exception of late February, when those air parcels exposed to temperatures below 195 K were affected by chemical ozone loss. In 1999, results are confined to the 475 K isentropic level, where no significant ozone loss was observed. Average temperatures were some 8°–10° higher than those in 1995, 1996, and 1997, when substantial chemical ozone loss occurred. The results underline the strong dependence of the chemical ozone loss on the stratospheric temperatures. This study shows that enhanced chlorine alone does not provide a sufficient condition for ozone loss. The evolution of stratospheric temperatures over the next decade will be the determining factor for the amount of wintertime chemical ozone loss in the Arctic stratosphere.


Journal of Atmospheric Chemistry | 1998

A Study of Ozone Laminae Using Diabatic Trajectories, Contour Advection and Photochemical Trajectory Model Simulations.

S. J. Reid; M. Rex; P. von der Gathen; I. Fløisand; Frode Stordal; G. D. Carver; Aaron T. Beck; E. Reimer; R. Krüger-Carstensen; L. L. de Haan; G. Braathen; V. Dorokhov; H. Fast; E. Kyrö; M. Gil; Z. Litynska; M. J. Molyneux; G. Murphy; F. O'Connor; F. Ravegnani; C. Varotsos; John C. Wenger; C. Zerefos

In this paper, we show that the rate of ozone loss in both polar and mid-latitudes, derived from ozonesonde and satellite data, has almost the same vertical distribution (although opposite sense) to that of ozone laminae abundance. Ozone laminae appear in the lower stratosphere soon after the polar vortex is established in autumn, increase in number throughout the winter and reach a maximum abundance in late winter or spring. We indicate a possible coupling between mid-winter, sudden stratospheric warmings (when the vortex is weakened or disrupted) and the abundance of ozone laminae using a 23-year record of ozonesonde data from the World Ozone Data Center in Canada combined with monthly-mean January polar temperatures at 30 hPa.Results are presented from an experiment conducted during the winter of 1994/95, in phase II of the Second European Stratospheric And Mid-latitude Experiment (SESAME), in which 93 ozone-enhanced laminae of polar origin observed by ozonesondes at different time and locations are linked by diabatic trajectories, enabling them to be probed twice or more. It is shown that, in general, ozone concentrations inside laminae fall progressively with time, mixing irreversibly with mid-latitude air on time-scales of a few weeks. A particular set of laminae which advected across Europe during mid February 1995 are examined in detail. These laminae were observed almost simultaneously at seven ozonesonde stations, providing information on their spatial scales. The development of these laminae has been modelled using the Contour Advection algorithm of Norton (1994), adding support to the concept that many laminae are extrusions of vortex air. Finally, a photochemical trajectory model is used to show that, if the air in the laminae is chemically activated, it will impact on mid-latitude ozone concentrations. An estimate is made of the potential number of ozone molecules lost each winter via this mechanism.


Geophysical Research Letters | 2000

Match observations in the Arctic winter 1996/97: High stratospheric ozone loss rates correlate with low temperatures deep inside the polar vortex

A. Schulz; M. Rex; J. Steger; N. R. P. Harris; G. O. Braathen; E. Reimer; R. Alfier; A. Beck; M. Alpers; J. Cisneros; H. Claude; H. De Backer; H. Dier; V. Dorokhov; H. Fast; S. Godin; Georg Hansen; H. Kanzawa; B. Kois; Y. Kondo; E. Kosmidis; E. Kyrö; Z. Litynska; M. J. Molyneux; G. Murphy; H. Nakane; C. Parrondo; F. Ravegnani; C. Varotsos; C. Vialle

With the Match technique, which is based on the coordinated release of ozonesondes, chemical ozone loss rates in the Arctic stratospheric vortex in early 1997 have been quantified in a vertical region between 400 K and 550 K. Ozone destruction was observed from mid February to mid March in most of these levels, with maximum loss rates between 25 and 45 ppbv/day. The vortex averaged loss rates and the accumulated vertically integrated ozone loss have been smaller than in the previous two winters, indicating that the record low ozone columns observed in spring 1997 were partly caused by dynamical effects. The observed ozone loss is inhomogeneous through the vortex with the highest loss rates located in the vortex centre, coinciding with the lowest temperatures. Here the loss rates per sunlit hour reached 6 ppbv/h, while the corresponding vortex averaged rates did not exceed 3.9 ppbv/h.


Journal of Geophysical Research | 2003

Climatology of UTLS ozone and the ratio of ozone and potential vorticity over northern Europe

T. Narayana Rao; S. Kirkwood; Johan Arvelius; P. von der Gathen; Rigel Kivi

Annual and interannual variations of ozone in the upper troposphere and lower stratosphere (UTLS) region have been studied using ozonesonde data collected between 1994 and 2001 at several northern European stations. The climatology of ozone exhibits a prominent annual cycle in the UTLS region. The observed change in the phase of the annual cycle from late spring-early summer at 500 hPa to spring at 200 hPa and to winter-early spring at 100 hPa shows the switching of the ozone control from photochemical to dynamical. Traces of interannual variation in the lower stratosphere are seen not only in the upper troposphere but also in the middle troposphere (not necessarily always) indicating the dynamical influence on tropospheric ozone budget. Further, the correlation between ozone mixing ratio and potential vorticity (PV) is studied at three northern high-latitude stations. As expected, a good correlation is found in the lower stratosphere, while the correlation is fair in the middle troposphere, except during summer over the European Arctic. This weak correlation at high latitudes indicates the dominance of photochemistry over dynamics in the presence of prolonged hours of solar illumination. The correlation coefficients derived at high latitudes are smaller than those reported at midlatitudes. This could be due to the greater number of tropopause folds at midlatitudes than at high latitudes and this eventually leads to the conclusion that the downward cross-tropopause flux is greater at midlatitudes than at high latitudes. Absence of a significant north-south gradient in the ozone/PV ratio in the lower stratosphere suggests that a single ozone/PV ratio (however, the ratio varies with month) can be used to convert global PV fluxes to ozone fluxes. A few cases of tropopause folds (only one case study is reported in the present study) are selected and studied in detail with the help of a very high frequency radar and meteorological analysis. The ratio between ozone and PV for these case studies agrees reasonably well with the climatological ratios.

Collaboration


Dive into the P. von der Gathen's collaboration.

Top Co-Authors

Avatar

E. Kyrö

Finnish Meteorological Institute

View shared research outputs
Top Co-Authors

Avatar

M. Rex

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar

H. Claude

Deutscher Wetterdienst

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. O. Braathen

Norwegian Institute for Air Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. De Backer

Royal Meteorological Institute

View shared research outputs
Top Co-Authors

Avatar

M. Allaart

Royal Netherlands Meteorological Institute

View shared research outputs
Top Co-Authors

Avatar

S. B. Andersen

Danish Meteorological Institute

View shared research outputs
Top Co-Authors

Avatar

E. Reimer

Free University of Berlin

View shared research outputs
Researchain Logo
Decentralizing Knowledge