Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sansanee Noisakran is active.

Publication


Featured researches published by Sansanee Noisakran.


The Journal of Infectious Diseases | 2006

Vascular Leakage in Severe Dengue Virus Infections: A Potential Role for the Nonstructural Viral Protein NS1 and Complement

Panisadee Avirutnan; Nuntaya Punyadee; Sansanee Noisakran; Chulaluk Komoltri; Somchai Thiemmeca; Kusuma Auethavornanan; Aroonroong Jairungsri; Rattiyaporn Kanlaya; Nattaya Tangthawornchaikul; Chunya Puttikhunt; Sa-nga Pattanakitsakul; Pa-thai Yenchitsomanus; Juthathip Mongkolsapaya; Watchara Kasinrerk; Nopporn Sittisombut; Matthias Husmann; Maria Blettner; Sirijitt Vasanawathana; Sucharit Bhakdi; Prida Malasit

BACKGROUND Vascular leakage and shock are the major causes of death in patients with dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Thirty years ago, complement activation was proposed to be a key underlying event, but the cause of complement activation has remained unknown. METHODS The major nonstructural dengue virus (DV) protein NS1 was tested for its capacity to activate human complement in its membrane-associated and soluble forms. Plasma samples from 163 patients with DV infection and from 19 patients with other febrile illnesses were prospectively analyzed for viral load and for levels of NS1 and complement-activation products. Blood and pleural fluids from 9 patients with DSS were also analyzed. RESULTS Soluble NS1 activated complement to completion, and activation was enhanced by polyclonal and monoclonal antibodies against NS1. Complement was also activated by cell-associated NS1 in the presence of specific antibodies. Plasma levels of NS1 and terminal SC5b-9 complexes correlated with disease severity. Large amounts of NS1, complement anaphylatoxin C5a, and the terminal complement complex SC5b-9 were present in pleural fluids from patients with DSS. CONCLUSIONS Complement activation mediated by NS1 leads to local and systemic generation of anaphylatoxins and SC5b-9, which may contribute to the pathogenesis of the vascular leakage that occurs in patients with DHF/DSS.


Blood | 2010

Dengue virus–induced hemorrhage in a nonhuman primate model

Nattawat Onlamoon; Sansanee Noisakran; Hui Mien Hsiao; Alexander Duncan; Francois Villinger; Aftab A. Ansari; Guey Chuen Perng

Lack of a dengue hemorrhagic animal model recapitulating human dengue virus infection has been a significant impediment in advancing our understanding of the early events involved in the pathogenesis of dengue disease. In efforts to address this issue, a group of rhesus macaques were intravenously infected with dengue virus serotype 2 (strain 16 681) at 1 x 10(7) PFU/animal. A classic dengue hemorrhage developed 3 to 5 days after infection in 6 of 6 animals. Blood chemistry appeared to be normal with exception of creatine phosphokinase, which peaked at 7 days after infection. A modest thrombocytopenia and noticeable neutropenia concomitant with slight decrease of hemoglobin and hematocrit were registered. In addition, the concentration of D-dimer was elevated significantly. Viremia peaked at 3 to 5 days after infection followed by an inverse relationship between T and B lymphocytes and a bimodal pattern for platelet-monocytes and platelet-neutrophil aggregates. Dengue virus containing platelets engulfed by monocytes was noted at 8 or 9 days after infection. Thus, rhesus macaques inoculated intravenously with a high dose of dengue virus produced dengue hemorrhage, which may provide a unique platform to define the early events in dengue virus infection and help identify which blood components contribute to the pathogenesis of dengue disease.


Journal of Virology | 2008

Differential Modulation of prM Cleavage, Extracellular Particle Distribution, and Virus Infectivity by Conserved Residues at Nonfurin Consensus Positions of the Dengue Virus pr-M Junction

Jiraphan Junjhon; Matthawee Lausumpao; Sunpetchuda Supasa; Sansanee Noisakran; Adisak Songjaeng; Prakaimuk Saraithong; Kridsada Chaichoun; Utaiwan Utaipat; Poonsook Keelapang; Amornrat Kanjanahaluethai; Chunya Puttikhunt; Watchara Kasinrerk; Prida Malasit; Nopporn Sittisombut

ABSTRACT In the generation of flavivirus particles, an internal cleavage of the envelope glycoprotein prM by furin is required for the acquisition of infectivity. Unlike cleavage of the prM of other flaviviruses, cleavage of dengue virus prM is incomplete in many cell lines; the partial cleavage reflects the influence of residues at furin nonconsensus positions of the pr-M junction, as flaviviruses share basic residues at positions P1, P2, and P4, recognized by furin. In this study, viruses harboring the alanine-scanning and other multiple-point mutations of the pr-M junction were generated, employing a dengue virus background that exhibited 60 to 70% prM cleavage and a preponderance of virion-sized extracellular particles. Analysis of prM and its cleavage products in viable mutants revealed a cleavage-suppressive effect at the conserved P3 Glu residue, as well as the cleavage-augmenting effects at the P5 Arg and P6 His residues, indicating an interplay between opposing modulatory influences mediated by these residues on the cleavage of the pr-M junction. Changes in the prM cleavage level were associated with altered proportions of extracellular virions and subviral particles; mutants with reduced cleavage were enriched with subviral particles and prM-containing virions, whereas the mutant with enhanced cleavage was deprived of these particles. Alterations of virus multiplication were detected in mutants with reduced prM cleavage and were correlated with their low specific infectivities. These findings define the functional roles of charged residues located adjacent to the furin consensus sequence in the cleavage of dengue virus prM and provide plausible mechanisms by which the reduction in the pr-M junction cleavability may affect virus replication.


Experimental Biology and Medicine | 2008

Alternate Hypothesis on the Pathogenesis of Dengue Hemorrhagic Fever (DHF)/Dengue Shock Syndrome (DSS) in Dengue Virus Infection

Sansanee Noisakran; Guey Chuen Perng

Dengue fever, caused by infection with dengue virus, is not a new disease, but recently because of its serious emerging health threats, coupled with possible dire consequences including death, it has aroused considerable medical and public health concerns worldwide. Today, dengue is considered one of the most important arthropod-borne viral diseases in humans in terms of morbidity and mortality. Globally, it is estimated that approximate 50 to 100 million new dengue virus infections occur annually. Among these, there are 200,000 to 500,000 cases of potential life-threatening dengue hemorrhagic fever (DHF)/dengue shock syndrome (DSS), characterized by thrombocytopenia and increased vascular permeability. The death rate associated with the more severe form DHF/DSS is approximately 5%, predominantly in children under the age of 15. Although intensive efforts have been made to study the early clinical pathophysiology of dengue infection with the objective to identify the potential cause of DHF, results or data that have accumulated from different regions of the world involving studies of different ethnicity groups are inconsistent at present in terms of identifying a unified hypothesis for the pathogenesis of DHF/DSS. Thus, the potential mechanisms involved in the pathogenesis of DHF and DSS remain elusive. The purpose of this review is to identify alternate factors, such as innate immune parameters, hyper-thermal factors, conditioning of neutralizing antibody, concept of vector transmission, and physical status of virus in viremic patients that may play a role in the induction of DHF and DSS, which might have directly or indirectly contributed to the discrepancies that are noted in the literature reported to date. It is the hope that identification of an alternative explanation for the pathogenesis of DHF/DSS will pave the way for the institution of new strategies for the prevention of this complicated disease.


Biochemical and Biophysical Research Communications | 2009

Interaction of dengue virus envelope protein with endoplasmic reticulum-resident chaperones facilitates dengue virus production.

Thawornchai Limjindaporn; Wiyada Wongwiwat; Sansanee Noisakran; Chatchawan Srisawat; Janjuree Netsawang; Chunya Puttikhunt; Watchara Kasinrerk; Panisadee Avirutnan; Somchai Thiemmeca; Rungtawan Sriburi; Nopporn Sittisombut; Prida Malasit; Pa-thai Yenchitsomanus

Dengue virus infection is an important mosquito-borne disease and a public health problem worldwide. A better understanding of interactions between human cellular host and dengue virus proteins will provide insight into dengue virus replication and cellular pathogenesis. The glycosylated envelope protein of dengue virus, DENV E, is processed in the endoplasmic reticulum of host cells and therefore reliant on host processing functions. The complement of host ER functions involved and nature of the interactions with DENV E has not been thoroughly investigated. By employing a yeast two-hybrid assay, we found that domain III of DENV E interacts with human immunoglobulin heavy chain binding protein (BiP). The relevance of this interaction was demonstrated by co-immunoprecipitation and co-localization of BiP and DENV E in dengue virus-infected cells. Using the same approach, association of DENV E with two other chaperones, calnexin and calreticulin was also observed. Knocking-down expression of BiP, calnexin, or calreticulin by siRNA significantly decreased the production of infectious dengue virions. These results indicate that the interaction of these three chaperones with DENV E plays an important role in virion production, likely facilitating proper folding and assembly of dengue proteins.


Journal of General Virology | 2008

Association of dengue virus NS1 protein with lipid rafts

Sansanee Noisakran; Thanyaporn Dechtawewat; Panisadee Avirutnan; Taroh Kinoshita; Uamporn Siripanyaphinyo; Chunya Puttikhunt; Watchara Kasinrerk; Prida Malasit; Nopporn Sittisombut

During the replication of dengue virus, a viral non-structural glycoprotein, NS1, associates with the membrane on the cell surface and in the RNA replication complex. NS1 lacks a transmembrane domain, and the mechanism by which it associates with the membrane remains unclear. This study aimed to investigate whether membrane-bound NS1 is present in lipid rafts in dengue virus-infected cells. Double immunofluorescence staining of infected HEK-293T cells revealed that NS1 localized with raft-associated molecules, ganglioside GM1 and CD55, on the cell surface. In a flotation gradient centrifugation assay, a small proportion of NS1 in Triton X-100 cell lysate consistently co-fractionated with raft markers. Association of NS1 with lipid rafts was detected for all four dengue serotypes, as well as for Japanese encephalitis virus. Analysis of recombinant NS1 forms showed that glycosylated NS1 dimers stably expressed in HEK-293T cells without an additional C-terminal sequence, or with a heterologous transmembrane domain, failed to associate with lipid rafts. In contrast, glycosylphosphatidylinositol-linked recombinant NS1 exhibited a predilection for lipid rafts. These results indicate an association of a minor subpopulation of NS1 with lipid rafts during dengue virus infection and suggest that modification of NS1, possibly lipidation, is required for raft association.


Virus Research | 2010

Nuclear localization of dengue virus capsid protein is required for DAXX interaction and apoptosis

Janjuree Netsawang; Sansanee Noisakran; Chunya Puttikhunt; Watchara Kasinrerk; Wiyada Wongwiwat; Prida Malasit; Pa-thai Yenchitsomanus; Thawornchai Limjindaporn

Dengue virus capsid protein (DENVC) localizes to both the cytoplasm and nucleus of dengue virus-infected cells. DENV C contains three nuclear localization signals (NLS), (6)KKAR(9), (73)KKSK(76), and the bipartite signal (85)RKeigrmlnilnRRRR(100). Stable HepG2 cells constitutively expressing DENV C, DENV C (Delta 85-100) and DENV C (Delta 73-100) were constructed to clarify whether nuclear translocation of DENV C affected apoptosis in liver cell line. While the wild-type DENV C could translocate into the nuclei of HepG2 cells, the mutant DENV Cs were restricted to the cytoplasm. The loss of nuclear localization of both mutant DENV Cs resulted in the disruption of their interactions with the apoptotic protein Daxx. Interestingly, upon treatment with anti-Fas antibody, the HepG2 cells expressing the wild-type DENV C showed significantly more apoptosis compared with the HepG2 cells expressing either mutant DENV C. To identify the amino acids required for DAXX interaction and apoptosis, substitution mutations either (K73A/K74A) or (R85A/K86A) were introduced into the C-terminal region of DENV C, and tested whether these mutations affected its interaction with Daxx and apoptosis. The results demonstrate that (73)KK and (85)RK of DENV C are important for its nuclear localization, interaction with DAXX and induction of apoptosis. This work is the first to demonstrate that nuclear localization of DENV C is required for DAXX interaction and apoptosis.


Advances in Virology | 2010

Cells in Dengue Virus Infection In Vivo

Sansanee Noisakran; Nattawat Onlamoon; Pucharee Songprakhon; Hui-Mien Hsiao; Kulkanya Chokephaibulkit; Guey Chuen Perng

Dengue has been recognized as one of the most important vector-borne emerging infectious diseases globally. Though dengue normally causes a self-limiting infection, some patients may develop a life-threatening illness, dengue hemorrhagic fever (DHF)/dengue shock syndrome (DSS). The reason why DHF/DSS occurs in certain individuals is unclear. Studies in the endemic regions suggest that the preexisting antibodies are a risk factor for DHF/DSS. Viremia and thrombocytopenia are the key clinical features of dengue virus infection in patients. The amounts of virus circulating in patients are highly correlated with severe dengue disease, DHF/DSS. Also, the disturbance, mainly a transient depression, of hematological cells is a critical clinical finding in acute dengue patients. However, the cells responsible for the dengue viremia are unresolved in spite of the intensive efforts been made. Dengue virus appears to replicate and proliferate in many adapted cell lines, but these in vitro properties are extremely difficult to be reproduced in primary cells or in vivo. This paper summarizes reports on the permissive cells in vitro and in vivo and suggests a hematological cell lineage for dengue virus infection in vivo, with the hope that a new focus will shed light on further understanding of the complexities of dengue disease.


Biochemical and Biophysical Research Communications | 2008

Identification of human hnRNP C1/C2 as a dengue virus NS1-interacting protein

Sansanee Noisakran; Suchada Sengsai; Visith Thongboonkerd; Rattiyaporn Kanlaya; Supachok Sinchaikul; Shui-Tein Chen; Chunya Puttikhunt; Watchara Kasinrerk; Thawornchai Limjindaporn; Wiyada Wongwiwat; Prida Malasit; Pa-thai Yenchitsomanus

Dengue virus nonstructural protein 1 (NS1) is a key glycoprotein involved in the production of infectious virus and the pathogenesis of dengue diseases. Very little is known how NS1 interacts with host cellular proteins and functions in dengue virus-infected cells. This study aimed at identifying NS1-interacting host cellular proteins in dengue virus-infected cells by employing co-immunoprecipitation, two-dimensional gel electrophoresis, and mass spectrometry. Using lysates of dengue virus-infected human embryonic kidney cells (HEK 293T), immunoprecipitation with an anti-NS1 monoclonal antibody revealed eight isoforms of dengue virus NS1 and a 40-kDa protein, which was subsequently identified by quadrupole time-of-flight tandem mass spectrometry (Q-TOF MS/MS) as human heterogeneous nuclear ribonucleoprotein (hnRNP) C1/C2. Further investigation by co-immunoprecipitation and co-localization confirmed the association of hnRNP C1/C2 and dengue virus NS1 proteins in dengue virus-infected cells. Their interaction may have implications in virus replication and/or cellular responses favorable to survival of the virus in host cells.


Experimental Hematology | 2012

Infection of bone marrow cells by dengue virus in vivo

Sansanee Noisakran; Nattawat Onlamoon; Hui-Mien Hsiao; Kristina B. Clark; Francois Villinger; Aftab A. Ansari; Guey Chuen Perng

Abnormal bone marrow (BM) suppression is one of the hallmarks of dengue virus (DENV) infection in patients. Although the etiology remains unclear, direct viral targeting of the BM has been reasoned to be a contributing factor. The present studies were carried out in an effort to determine the potential effect of DENV infection on the cellularity of BM using a previously established nonhuman primate model of DENV-induced coagulopathy. BM aspirates were collected at various times from the infected nonhuman primate and cells were phenotypically defined and isolated using standard flow cytometry (fluorescence-activated cell sorting). These isolated cells were subjected to detection of DENV utilizing quantitative real-time reverse transcription polymerase chain reaction, electron microscopy, and immunostaining techniques. DENV RNA was detectable by quantitative real-time reverse transcription polymerase chain reaction in BM specimens and the presence of DENV-like particles within platelet was confirmed by electron microscopy. Enumeration of BM cells revealed a transient surge in cellularity at day 1, followed by a gradual decline from days 2 to 10 post infection. Detailed phenotypic studies showed similar kinetics in the frequencies of CD41(+)CD61(+) cells, regardless of CD34 and CD45 expression. The CD61(+) cells were not only the predominant cells that stained for DENV antigen but fluorescence-activated cell sorting-assisted isolation of CD61(+) cells from the BM were shown to contain infectious DENV by coculture with Vero cells. These data support the view that intravenous infection of nonhuman primate with DENV leads to direct infection of the BM, which is likely to be a contributing factor for transient cell suppression in the peripheral blood characteristic of acute DENV infection.

Collaboration


Dive into the Sansanee Noisakran's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chunya Puttikhunt

Thailand National Science and Technology Development Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guey Chuen Perng

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel J. J. Carr

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge