Pablo Aviles
University of Salamanca
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pablo Aviles.
Blood | 2009
Enrique M. Ocio; Patricia Maiso; Xi Chen; Mercedes Garayoa; Stela Álvarez-Fernández; Laura San-Segundo; David Vilanova; Lucía López-Corral; Juan Carlos Montero; Teresa Hernández-Iglesias; Enrique de Alava; Carlos M. Galmarini; Pablo Aviles; Carmen Cuevas; Jesús F. San-Miguel; Atanasio Pandiella
Multiple myeloma (MM) remains incurable, and new drugs with novel mechanisms of action are still needed. In this report, we have analyzed the action of Zalypsis, an alkaloid analogous to certain natural marine compounds, in MM. Zalypsis turned out to be the most potent antimyeloma agent we have tested so far, with IC(50) values from picomolar to low nanomolar ranges. It also showed remarkable ex vivo potency in plasma cells from patients and in MM cells in vivo xenografted in mice. Besides the induction of apoptosis and cell cycle arrest, Zalypsis provoked DNA double-strand breaks (DSBs), evidenced by an increase in phospho-histone-H2AX and phospho-CHK2, followed by a striking overexpression of p53 in p53 wild-type cell lines. In addition, in those cell lines in which p53 was mutated, Zalypsis also provoked DSBs and induced cell death, although higher concentrations were required. Immunohistochemical studies in tumors also demonstrated histone-H2AX phosphorylation and p53 overexpression. Gene expression profile studies were concordant with these results, revealing an important deregulation of genes involved in DNA damage response. The potent in vitro and in vivo antimyeloma activity of Zalypsis uncovers the high sensitivity of tumor plasma cells to DSBs and strongly supports the use of this compound in MM patients.
Cancer Research | 2008
Constantine S. Mitsiades; Enrique M. Ocio; Atanasio Pandiella; Patricia Maiso; Consuelo Gajate; Mercedes Garayoa; David Vilanova; Juan Carlos Montero; Nicholas Mitsiades; Ciaran J. McMullan; Nikhil C. Munshi; Teru Hideshima; Dharminder Chauhan; Pablo Aviles; Gabriel Otero; Glynn Faircloth; M. Victoria Mateos; Paul G. Richardson; Faustino Mollinedo; Jesús F. San-Miguel; Kenneth C. Anderson
Despite recent progress in its treatment, multiple myeloma (MM) remains incurable, thus necessitating identification of novel anti-MM agents. We report that the marine-derived cyclodepsipeptide Aplidin exhibits, at clinically achievable concentrations, potent in vitro activity against primary MM tumor cells and a broad spectrum of human MM cell lines, including cells resistant to conventional (e.g., dexamethasone, alkylating agents, and anthracyclines) or novel (e.g., thalidomide and bortezomib) anti-MM agents. Aplidin is active against MM cells in the presence of proliferative/antiapoptotic cytokines or bone marrow stromal cells and has additive or synergistic effects with some of the established anti-MM agents. Mechanistically, a short in vitro exposure to Aplidin induces MM cell death, which involves activation of p38 and c-jun NH(2)-terminal kinase signaling, Fas/CD95 translocation to lipid rafts, and caspase activation. The anti-MM effect of Aplidin is associated with suppression of a constellation of proliferative/antiapoptotic genes (e.g., MYC, MYBL2, BUB1, MCM2, MCM4, MCM5, and survivin) and up-regulation of several potential regulators of apoptosis (including c-JUN, TRAIL, CASP9, and Smac). Aplidin exhibited in vivo anti-MM activity in a mouse xenograft model. The profile of the anti-MM activity of Aplidin in our preclinical models provided the framework for its clinical testing in MM, which has already provided favorable preliminary results.
Biochemical Pharmacology | 2009
Juan F.M. Leal; Verónica Garcı́a-Hernández; Victoria Moneo; Alberto Domingo; Juan A. Bueren-Calabuig; Ana Negri; Federico Gago; María José Guillén-Navarro; Pablo Aviles; Carmen Cuevas; Luis F. Garcia-Fernandez; Carlos M. Galmarini
Zalypsis is a new synthetic alkaloid tetrahydroisoquinoline antibiotic that has a reactive carbinolamine group. This functionality can lead to the formation of a covalent bond with the amino group of selected guanines in the DNA double helix, both in the absence and in the presence of methylated cytosines. The resulting complex is additionally stabilized by the establishment of one or more hydrogen bonds with adjacent nucleotides in the opposite strand as well as by van der Waals interactions within the minor groove. Fluorescence-based thermal denaturation experiments demonstrated that the most favorable DNA triplets for covalent adduct formation are AGG, GGC, AGC, CGG and TGG, and these preferences could be rationalized on the basis of molecular modeling results. Zalypsis-DNA adducts eventually give rise to double-strand breaks, triggering S-phase accumulation and apoptotic cell death. The potent cytotoxic activity of Zalypsis was ascertained in a 24 cell line panel. The mean IC(50) value was 7nM and leukemia and stomach tumor cell lines were amongst the most sensitive. Zalypsis administration in four murine xenograft models of human cancer demonstrates significant tumor growth inhibition that is highest in the Hs746t gastric cancer cell line with no weight loss of treated animals. Taken together, these results indicate that the potent antitumor activity of Zalypsis supports its current development in the clinic as an anticancer agent.
British Journal of Pharmacology | 2010
Jfm Leal; Marta Martinez-Diez; Verónica Garcı́a-Hernández; Victoria Moneo; Alberto Domingo; Juan A. Bueren-Calabuig; Ana Negri; Federico Gago; María José Guillén-Navarro; Pablo Aviles; Carmen Cuevas; Luis F. Garcia-Fernandez; Carlos M. Galmarini
BACKGROUND AND PURPOSE PM01183 is a new synthetic tetrahydroisoquinoline alkaloid that is currently in phase I clinical development for the treatment of solid tumours. In this study we have characterized the interactions of PM01183 with selected DNA molecules of defined sequence and its in vitro and in vivo cytotoxicity.
Biochemical Pharmacology | 2014
Marta Martinez-Diez; María José Guillén-Navarro; Benet Pera; Benjamin Pierre Bouchet; Juan F. Martínez-Leal; Isabel Barasoain; Carmen Cuevas; Luis García-Fernández; J. Fernando Díaz; Pablo Aviles; Carlos M. Galmarini
PM060184 belongs to a new family of tubulin-binding agents originally isolated from the marine sponge Lithoplocamia lithistoides. This compound is currently produced by total synthesis and is under evaluation in clinical studies in patients with advanced cancer diseases. It was recently published that PM060184 presents the highest known affinities among tubulin-binding agents, and that it targets tubulin dimers at a new binding site. Here, we show that PM060184 has a potent antitumor activity in a panel of different tumor xenograft models. Moreover, PM060184 is able to overcome P-gp mediated resistance in vivo, an effect that could be related to its high binding affinity for tubulin. To gain insight into the mechanism responsible of the observed antitumor activity, we have characterized its molecular and cellular effects. We have observed that PM060184 is an inhibitor of tubulin polymerization that reduces microtubule dynamicity in cells by 59%. Interestingly, PM060184 suppresses microtubule shortening and growing at a similar extent. This action affects cells in interphase and mitosis. In the first case, the compound induces a disorganization and fragmentation of the microtubule network and the inhibition of cell migration. In the second case, it induces the appearance of multipolar mitosis and lagging chromosomes at the metaphase plate. These effects correlate with prometaphase arrest and induction of caspase-dependent apoptosis or appearance of cells in a multinucleated interphase-like state unrelated to classical apoptosis pathways. Taken together, these results indicate that PM060184 represents a new tubulin binding agent with promising potential as an anticancer agent.
Biochemical Pharmacology | 2009
Marc Vermeir; Alex Hemeryck; Filip Cuyckens; Andres Francesch; Marc Bockx; Jos Van Houdt; Kathleen Steemans; Geert Mannens; Pablo Aviles; Roland De Coster
Trabectedin (YONDELIS) is a potent anticancer agent which was recently approved in Europe for the treatment of soft tissue sarcoma. The drug is currently also in clinical development for the treatment of ovarian carcinoma. In vitro experiments were conducted to investigate the hepatic metabolism of [(14)C]trabectedin in Cynomolgus monkey and human liver subcellular fractions. The biotransformation of trabectedin was qualitatively similar in 12,000 x g supernatants of both species, and all human metabolites were also produced by the monkey. The trabectedin metabolites were identified by QTOF mass spectrometry, and HPLC co-chromatography with reference compounds. Trabectedin was metabolized via different biotransformation pathways. Most of the metabolic conversions occurred at the trabectedin A domain including mono-oxidation and di-oxidation, carboxylic acid formation with and without additional oxidation, and demethylation either without (N-demethylation to ET-729) or with additional mono-, di- or tri-oxidation. Another metabolite resulted from O-demethylation at the trabectedin C subunit, and in addition, aliphatic ring opening of the methylene dioxybridge at the B domain was detected. Overall, demethylation and oxidation played a major role in phase I metabolism of the drug. Human cDNA expressed CYPs 1A2, 2A6, 2B6, 2C8, 2C9, 2C18, 2D6, 2E1, 3A4 and 3A5 in E. coli membranes, but not CYP1B1, 2C19, and 4A11 were able to metabolize [(14)C]trabectedin. Experiments with chemical inhibitors and CYP inhibitory antibodies indicated that, at therapeutic levels, CYP3A4 is the main human CYP isoform involved in trabectedins hepatic metabolism. In monkey and human liver microsomes, trabectedin was not substantially metabolized by glucuronidation.
Molecular Cancer Therapeutics | 2016
Gema Santamaría Nuñez; Carlos Mario Genes Robles; Christophe Giraudon; Juan F. Martínez-Leal; Emmanuel Compe; Frédéric Coin; Pablo Aviles; Carlos M. Galmarini; Jean-Marc Egly
We have defined the mechanism of action of lurbinectedin, a marine-derived drug exhibiting a potent antitumor activity across several cancer cell lines and tumor xenografts. This drug, currently undergoing clinical evaluation in ovarian, breast, and small cell lung cancer patients, inhibits the transcription process through (i) its binding to CG-rich sequences, mainly located around promoters of protein-coding genes; (ii) the irreversible stalling of elongating RNA polymerase II (Pol II) on the DNA template and its specific degradation by the ubiquitin/proteasome machinery; and (iii) the generation of DNA breaks and subsequent apoptosis. The finding that inhibition of Pol II phosphorylation prevents its degradation and the formation of DNA breaks after drug treatment underscores the connection between transcription elongation and DNA repair. Our results not only help to better understand the high specificity of this drug in cancer therapy but also improve our understanding of an important transcription regulation mechanism. Mol Cancer Ther; 15(10); 2399–412. ©2016 AACR.
Journal of Chromatography B | 2003
Jianming Yin; Pablo Aviles; William Lee; Carl Ly; Maria Jose Guillen; Pilar Calvo; Ignacio Manzanares; Glynn Faircloth
A sensitive high-performance liquid chromatography-tandem mass spectrometry assay for thiocoraline, an anti-tumor depsipeptide, in mouse plasma is described. Echinomycin, a quinoxaline peptide, was used as an internal standard. Thiocoraline was recovered from the mouse plasma using protein precipitation with acetonitrile and followed by solid-phase extraction of the supernatant. The mobile phase consisted of methanol (0.1% formic acid)-water (0.1% formic acid) (90:10, v/v). The analytical column was a YMC C(18). The standard curve was linear from 0.1 to 50 ng/ml (R(2)>0.99). The lower limit of quantitation was 0.1 ng/ml. The assay was specific based on the multiple reaction monitoring transitions at m/z 1157-->215 and m/z 1101-->243 for thiocoraline and the internal standard, echinomycin, respectively. The mean intra- and inter-day assay accuracies remained below 5 and 12%, respectively, for all calibration standards and quality control (QC) samples. The intra- and inter-day assay precisions were less than 11.4 and 9.5% for all QC levels, respectively. The utility of the assay was demonstrated by a pharmacokinetic study of i.v. (bolus) thiocoraline on CD-1 mice. Thiocoraline was stable in mouse plasma in an ice-water bath for 6 h and for three freeze-thaw cycles. The reconstituted thiocoraline after extraction and drying sample process was stable in the autosampler for over 24 h. The assay was able to quantify thiocoraline in plasma up to 48 h following dose. Pharmacokinetic analysis showed that thiocoraline has distinct pharmacokinetic profiling when dosed in different formulation solutions. The assay is currently used to measure thiocoraline plasma concentrations in support of a project to develop a suitable formulation with a desirable pharmacokinetic profile.
Haematologica | 2011
Enrique Colado; Teresa Paíno; Patricia Maiso; Enrique M. Ocio; Xi Chen; Stela Álvarez-Fernández; Norma C. Gutiérrez; Jesús Martín-Sánchez; Juan Flores-Montero; Laura San Segundo; Mercedes Garayoa; Diego Fernández-Lázaro; María-Belén Vidriales; Carlos M. Galmarini; Pablo Aviles; Carmen Cuevas; Atanasio Pandiella; Jesús F. San-Miguel
Background Although the majority of patients with acute myeloid leukemia initially respond to conventional chemotherapy, relapse is still the leading cause of death, probably because of the presence of leukemic stem cells that are insensitive to current therapies. We investigated the antileukemic activity and mechanism of action of zalypsis, a novel alkaloid of marine origin. Design and Methods The activity of zalypsis was studied in four acute myeloid leukemia cell lines and in freshly isolated blasts taken from patients with acute myeloid leukemia before they started therapy. Zalypsis-induced apoptosis of both malignant and normal cells was measured using flow cytometry techniques. Gene expression profiling and western blot studies were performed to assess the mechanism of action of the alkaloid. Results Zalypsis showed a very potent antileukemic activity in all the cell lines tested and potentiated the effect of conventional antileukemic drugs such as cytarabine, fludarabine and daunorubicin. Interestingly, zalypsis showed remarkable ex vivo potency, including activity against the most immature blast cells (CD34+ CD38− Lin−) which include leukemic stem cells. Zalypsis-induced apoptosis was the result of an important deregulation of genes involved in the recognition of double-strand DNA breaks, such as Fanconi anemia genes and BRCA1, but also genes implicated in the repair of double-strand DNA breaks, such as RAD51 and RAD54. These gene findings were confirmed by an increase in several proteins involved in the pathway (pCHK1, pCHK2 and pH2AX). Conclusions The potent and selective antileukemic effect of zalypsis on DNA damage response mechanisms observed in acute myeloid leukemia cell lines and in patients’ samples provides the rationale for the investigation of this compound in clinical trials.
Journal of Pharmaceutical and Biomedical Analysis | 2016
Tiziana Pernice; Alan Bishop; Maria Jose Guillen; Carmen Cuevas; Pablo Aviles
Lurbinectedin (PM01183) is a new synthetic tetrahydroisoquinoline alkaloid that binds to selected sequences in the minor groove of DNA, inducing PM01183-DNA adducts that stall replication, DNA repair and transcription and gives rise to double-strand breaks and finally, caspase-dependent apoptotic cell death. PM01183 has demonstrated clinical antitumor activity in platinum resistant/refractory ovarian cancer patients. A rapid and sensitive liquid chromatography/tandem mass spectrometry assay was developed and validated to quantify PM01183 in plasma from nonclinical species. The bioanalysis consisted of a supported liquid extraction, followed by a gradient phase chromatography and, detection by positive ion electrospray tandem mass spectrometry. The calibration range for PM01183 was established using PM01183 standards from 0.1 to 100 ng/mL in blank plasma. The multiple reaction monitoring, based on the transition m/z 767.3→273.0, was specific for PM01183, and that based on the transition m/z 771.4→277.0 was specific for the internal standard (deuterated PM01183). No endogenous material interfered with the analysis of PM01183 and the internal standard from blank plasma. The limit of detection (LOD) of the assay was calculated as 0.025 ng/mL. The correlation coefficients for the calibration curves ranged from 0.9937 to 0.9987. The mean inter-day accuracies for all calibration standards ranged from 92 to 108% (≤8% bias), and the mean inter-day precision for calibration standards was always less than 12%. The mean intra and inter-day assay accuracy for all quality control replicates remained between 91 and 109%. The mean intra and inter-day assay precision was less than 10% for all QC levels. The method was validated to demonstrate the specificity, recovery, limit of quantification, accuracy and precision of measurements. The assay has been used to support preclinical pharmacokinetic and toxicokinetic studies of PM01183 in nonclinical species. The main PK parameters in dogs (3 male and 3 female, respectively) were calculated as follows: maximum concentration (Cmax, 12.9±0.6 and 10.2±3.0 ng/mL) and the area under the plasma concentration-time curve (AUC, 24.9±0.7 and 22.6±6.1 ng h/mL). The results showed that plasma samples could be monitored for PM01183 for long enough to accurately estimate pharmacokinetics information.