Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pablo Cruz is active.

Publication


Featured researches published by Pablo Cruz.


Ecology | 2009

Leaf traits capture the effects of land use changes and climate on litter decomposability of grasslands across Europe

Claire Fortunel; Eric Garnier; Richard Joffre; Elena Kazakou; Helen Quested; Karl Grigulis; Sandra Lavorel; Pauline Ansquer; Helena Castro; Pablo Cruz; Jiří Doležal; Ove Eriksson; Helena Freitas; Carly Golodets; Claire Jouany; Jaime Kigel; Michael Kleyer; Veiko Lehsten; Jan Lepš; Tonia Meier; Robin J. Pakeman; Maria Papadimitriou; Vasilios P. Papanastasis; Fabien Quétier; Matt Robson; Marcelo Sternberg; Jean-Pierre Theau; Aurélie Thébault; Maria Zarovali

Land use and climate changes induce shifts in plant functional diversity and community structure, thereby modifying ecosystem processes. This is particularly true for litter decomposition, an essential process in the biogeochemical cycles of carbon and nutrients. In this study, we asked whether changes in functional traits of living leaves in response to changes in land use and climate were related to rates of litter potential decomposition, hereafter denoted litter decomposability, across a range of 10 contrasting sites. To disentangle the different control factors on litter decomposition, we conducted a microcosm experiment to determine the decomposability under standard conditions of litters collected in herbaceous communities from Europe and Israel. We tested how environmental factors (disturbance and climate) affected functional traits of living leaves and how these traits then modified litter quality and subsequent litter decomposability. Litter decomposability appeared proximately linked to initial litter quality, with particularly clear negative correlations with lignin-dependent indices (litter lignin concentr tion, lignin:nitrogen ratio, and fiber component). Litter quality was directly related to community-weighted mean traits. Lignin-dependent indices of litter quality were positively correlated with community-weighted mean leaf dry matter content (LDMC), and negatively correlated with community-weighted mean leaf nitrogen concentration (LNC). Consequently, litter decomposability was correlated negatively with community-weighted mean LDMC, and positively with community-weighted mean LNC. Environmental factors (disturbance and climate) influenced community-weighted mean traits. Plant communities experiencing less frequent or less intense disturbance exhibited higher community-weighted mean LDMC, and therefore higher litter lignin content and slower litter decomposability. LDMC therefore appears as a powerful marker of both changes in land use and of the pace of nutrient cycling across 10 contrasting sites.


Journal of Vegetation Science | 2005

Variation in leaf traits through seasons and N-availability levels and its consequences for ranking grassland species

Raouda Al Haj Khaled; Michel Duru; Jean Pierre Theau; Sylvain Plantureux; Pablo Cruz

Abstract Question: Are leaf dry matter content, specific leaf area and leaf life span relevant plant traits to discriminate the fertility gradient in species-rich natural grasslands? In other words, is species ranking conserved when nitrogen availability or growing periods change? Location: Toulouse Research Centre, France; 150 m a.s.l. Methods: Fifteen grasses and nine dicotyledons were sown in pure stands in a random block design with three replicates. Each species was cultivated at two levels of nitrogen supply, limiting and non-limiting for growth, with three replications per nitrogen level. Leaf traits were measured across both levels of nitrogen supply and growing periods over the year. Results: Leaf dry matter content values separated the species into three life-form classes (grasses, rosette forbs and upright forbs, P < 0.001). This was not the case for specific leaf area and leaf life span. The three leaf traits were variable across growing periods and nitrogen levels, but the ranking of species was conserved over N-levels and growth periods. Furthermore leaf dry matter content was always less variable than the other leaf traits. Conclusion: We conclude that leaf dry matter content measured only on grasses could be used as an indicator to describe the N-richness of the habitat where native herbaceous vegetation develops. Abbreviations: CV = Coefficient of variation; INN = Index of nitrogen nutrition; LDMC = Leaf dry matter content; LLS = Leaf life span; LSD = Least significant difference; RGR = Relative growth rate; SLA = Specific leaf area.


Journal of Ecology | 2012

Evidence for a ‘plant community economics spectrum’ driven by nutrient and water limitations in a Mediterranean rangeland of southern France

Ignacio Manuel Pérez-Ramos; Catherine Roumet; Pablo Cruz; Alain Blanchard; Paul Autran; Eric Garnier

Summary 1. Plant species composition and community functional structure (i.e. trait composition at the community level) result from a hierarchy of environmental filters that constrain which species and traits tend to be dominant in a given habitat. 2. We quantified variation in community functional structure along natural gradients of soil resources using several above- and below-ground parameters and explored links among these attributes to determine whether plant resource economics can be applied at the community level in a Mediterranean rangeland of southern France. 3. Limitation by nitrogen, soil water and soil depth were the main ecological factors driving the functional response at the community level. Most of the community functional parameters considered in this study were more dependent on nitrogen limitation than on the other two factors, mostly related with the acquisition–conservation trade-off at both the leaf and the root level. 4. We found a strong coordination between above-ground and below-ground components, with a high level of concordance along the resource gradients explored. As an example, tissue dry matter content – both in leaves and roots – was positively related to nitrogen limitation. These findings indicate that the leaf economic spectrum paradigm (resource conservation in resource-poor habitats versus resource acquisition in resource-rich habitats) can be extrapolated to the below-ground component and extends to a plant community spectrum. 5. Changes in the functional structure of communities were promoted by two complementary components of variation: (i) the replacement of species with highly contrasting resource-use strategies and, to a lesser extent, (ii) the intraspecific variation in several above-ground traits. 6. Synthesis. This study showed that soil water and nutrient limitations are the main drivers controlling functional community structure in the Mediterranean rangelands studied and that shifts in this structure were mainly due to species turnover. In addition, we provided evidence for a plant community economics spectrum, based on a strong coordination between above- and below-ground components in these resource-limited communities.


Rangeland Ecology & Management | 2010

Leaf Traits as Functional Descriptors of the Intensity of Continuous Grazing in Native Grasslands in the South of Brazil

Pablo Cruz; Fernando Luis F. De Quadros; Jean Pierre Theau; Adriana Frizzo; Claire Jouany; Michel Duru; Paulo César de Faccio Carvalho

Abstract Plant functional types (PFT) have been used to describe the response of native vegetation to environmental factors (i.e., fertility) and to livestock disturbance, but rarely under conditions of continuous grazing. In this work we investigate whether the long-term response of grassland communities submitted to a gradient of continuous grazing pressure can be described with such an approach. After 15 yr of differentiation of the grazing pressure applied to native grasslands we measured leaf dry-matter content (LDMC) and specific leaf area (SLA) of Poaceae populations of the communities. A grazing pressure gradient was created by levels of daily forage allowance: 4, 8, 12, and 16 kg of dry matter per day per 100 kg of animal live weight, monitored monthly. PFTs were defined by numerical analysis, where an algorithm finds the optimal trait subset based on the agreement between matrices of species × traits, paddocks × grass biomass, and environmental variables (levels of forage allowance and soil characteristics). The results show that it is possible to describe a gradient of grazing pressure by means of LDMC and/or SLA measured only on the Poacea contributing at least 80% of the total Poaceae biomass. Four PFTs were differentiated by these leaf traits. PFTs having low LDMC and high SLA are characteristic of high intensity of use and are made up largely of stoloniferous C4 species typical of rapid resource capture strategies. Conversely, PFTs characterized by high LDMC and low SLA include species that are representative of low grazing pressure. Variations in the aggregate value of traits are due to changes in the species proportions and not to leaf-size adaptation as hypothesized. We conclude than in the absence of a gradient of fertility, plants with strategies of resource capture tend to be more represented under high grazing pressures. This situation results in a loss of functional diversity, but in particular a reduction in forage availability, which is incompatible with high animal production.


Annals of Botany | 2009

Functional traits as indicators of fodder provision over a short time scale in species-rich grasslands.

Pauline Ansquer; Michel Duru; Jean Pierre Theau; Pablo Cruz

BACKGROUND AND AIMS Fodder provision in species-rich grasslands, i.e. herbage growth, proportion of leaf, and leaf and stem digestibility, is difficult to predict for short periods of time, such as between two defoliations or less. The value of two methods based on plant traits for evaluating these agronomic properties was examined. METHODS One method is based on plant trait measurements on the plant community (leaf dry matter content, plant height, flowering date); the other is on vegetation composition expressed as plant functional types (acquisitive versus conservative PFTs) established by measuring leaf dry matter content on pure grass stands. The experiment consisted of 18 fields with three different defoliation regimes (combinations of cutting and grazing) and two levels of fertilization. To establish a growth curve over the first growth cycle, herbage was sampled about 10 times in spring. KEY RESULTS Coefficients of correlation between agronomic properties of the vegetation and its functional composition were higher when the latter was assessed through PFT and an indicator of the plant nutrient status (Ni) instead of measured plant traits. The date at which the ceiling yield occurred for the standing herbage mass or only the leaf component, which varied by up to 500 degree-days between treatments, and the leaf proportion, depended entirely on the PFT, and largely so for the leaf digestibility. The standing herbage mass at the time of ceiling yield depended only on Ni, or mainly so in the case of the daily herbage growth rate. Similar plant digestibility between plant communities was found at flowering time, although there were big differences in PFT composition. The shape of the growth curve was flatter when there was great functional diversity in the plant community. CONCLUSIONS The PFT composition and the Ni were more reliable than the plant functional traits measured in the field for evaluating herbage growth pattern and digestibility in spring.


Agroforestry Systems | 2003

Nitrogen-fixation dynamics in a cut-and-carry silvopastoral system in the subhumid conditions of Guadeloupe, French Antilles

M. Dulormne; Jorge Sierra; Pekka Nygren; Pablo Cruz

This paper summarizes several studies on N recycling in a tropical silvopastoral system for assessing the ability of the system to increase soil fertility and insure sustainability. We analyzed the N2 fixation pattern of the woody legume component (Gliricidia sepium), estimated the recycling rate of the fixed N in the soil, and measured N outputs in tree pruning and cut grass (Dichanthium aristatum). With this information, we estimated the N balance of the silvopastoral system at the plot scale. The studies were conducted in an 11-year-old silvopastoral plot established by planting G. sepium cuttings at 0.3 m × 2 m spacing in natural grassland. The plot was managed as a cut-and-carry system where all the tree pruning residues (every 2-4 months) and cut grass (every 40-50 days) were removed and animals were excluded. No N fertilizer was applied. Dinitrogen fixation, as estimated by the 15N natural abundance method, ranged from 60-90% of the total N in aboveground tree biomass depending on season. On average, 76% of the N exports from the plot in tree pruning (194 kg [N] ha–1 yr–1) originated from N2 fixation. Grass production averaged 13 Mg ha–1 yr–1 and N export in cut grass was 195 kg [N] ha–1 yr–1. The total N fixed by G. sepium, as estimated from the tree and grass N exports and the increase in soil N content, was about 555 kg [N] ha–1 yr–1. Carbon sequestration averaged 1.9 Mg [C] ha–1 yr–1 and soil organic N in the 0-0.2 m layer increased at a rate of 166 kg [N] ha–1 yr–1, corresponding to 30% of N2 fixation by the tree. Nitrogen released in nodule turnover (10 kg [N] ha–1 yr–1) and litter decomposition (40 kg [N] ha–1 yr–1) contributed slightly to this increase, and most of the recycled N came from the turnover or the activity of other below-ground tree biomass than nodules.


Rangeland Ecology & Management | 2006

Using Leaf Traits to Rank Native Grasses According to Their Nutritive Value

Raounda Khaled; Michel Duru; Virginie Decruyenaere; Claire Jouany; Pablo Cruz

Abstract Leaf traits (leaf dry matter content [LDMC], specific leaf area [SLA] and leaf life span [LLS]) previously proposed to predict plant strategies for resource use, were studied to test if they can be used to rank grasses for digestible organic matter (DOM). On 14 native grass species from natural meadows in the French Pyrenees, leaf blade chemical components (fiber, cellulose, hemi-cellulose and lignin) and DOM were estimated for two growing periods using two different methods (chemical-enzymatic and Near Infrared Reflectance Spectroscopy). The ranking of species based on LDMC, SLA and LLS was conserved. Fiber content and DOM were significantly correlated even though the data were obtained in different years (2001 and 2002), on different organs (youngest adult blades in 2001 and all the green blades of tillers in 2002) and by different analytical methods. LDMC seems to be the most suitable trait to rank native grasses according to their nutritive value because it ranks species as well as leaf traits and it is the easiest to measure. We suggest using LDMC as an indicator to rank grassland communities for herbage nutritive values.


Plant and Soil | 1997

Effect of shade on the growth and mineral nutrition of a C4 perennial grass under field conditions

Pablo Cruz

The effect of shading by a shrub legume on the growth and nutrient uptake of a C4 tropical grass was studied during four regrowth cycles. Regrowth periods were characterised by contrasting soil water availability. Dichanthium aristatum (Poir.) C. E. Hubbard swards were grown in full sun and under Gliricidia sepium (Jacq.) Walp. and Leucaena leucocephala (Lam.) de Wit with a light transmission level ranging from 80 to 30% of the incoming photosynthetically active radiation (PAR), depending on shrub regrowth. A treatment with high N and water supply was included in one of the cycles to quantify the effect of shade alone on potential growth.Aboveground biomass (DM) and leaf area index (LAI) of swards were not depressed by the reduction of incoming PAR. The reduction in transmitted PAR by shrubs was compensated by an increase in the radiation use efficiency (RUE) of shaded swards. Higher RUE of unfertilised, shaded stands may be explained by higher levels of N availability in the soil. This is supported by the analysis of curves relating sward N accumulation to sward DM accumulation. In fact, for similar measured biomass the accummulated N was higher in shaded stands, a consequence of their higher N concentrations. This allowed shaded leaves to improve their CO2 assimilation rates on a leaf area basis. Higher RUE reported on shaded stands may be the consequence of higher leaf CO2 assimilation rates and also possible changes in the shoot:root ratio. As with N, the amount of K taken up by the sward was higher under shade, whereas P data were higher under shade only during the driest cycle. A positive water balance, alone or in combination with high N fertilisation, eliminated the improvement of the N nutrition of shaded stands. Thus, the positive effects of shade may be only observed when N and water are limiting sward growth in the open.


Plant Ecology | 2009

Do plant functional types based on leaf dry matter content allow characterizing native grass species and grasslands for herbage growth pattern

Michel Duru; Raouda Al Haj Khaled; Camille Ducourtieux; Jean Pierre Theau; Fernando Luiz Ferreira de Quadros; Pablo Cruz

Few studies have focused on vegetation characteristics of importance to feeding domestic herbivores, mainly the seasonal pattern of herbage growth at spring. Our objective is to establish and to evaluate a simple method of ranking grassland communities for these characteristics. We combined approaches at plant species level (comparison of grass species growing in a pure stand) and plant community level (comparison of grasslands differing mainly in their nutrient availability). Firstly, we ask if the ranking of species by leaf dry matter content (LDMC), a functional parameter used to assess the plant strategy for resource acquisition and use, is consistent with a classification of the species using three plant features that determine plant growth pattern at spring (beginning and ending of stem elongation, leaf lifespan). Secondly, for three networks of natural grasslands, we test whether there is consistency when ranking them by their dominant plant functional type (PFT A, B or C) established previously at species level, and by the three agronomic characteristics. For species growing in pure stands, there was a significant effect of PFT for the three plant features. For species having a low LDMC (A and B PFT), there were earlier stem elongation in the season, earlier flowering and shorter leaf lifespan. The opposite was observed for species having a high LDMC (C and D PFT). For grassland communities dominated by A-PFT, the ceiling yield for leaves and stems occurred earlier in spring than for those dominated by C-PFT. Results were consistent at plant and community levels. Scaling up from plant to community was well mediated by PFT. Plant features which characterize species for resource acquisition and use are consistent with herbage growth patterns at plant community level. These results show that herbage growth pattern and composition depend on PFTs and that knowing the PFT dominance is of great importance to plan the use of grasslands. We can expect to use the PFT approach to perform vegetation diagnosis at field level when the objective is to rank grassland communities for their agronomic characteristics.


Journal of Applied Ecology | 2014

Plant trait–digestibility relationships across management and climate gradients in permanent grasslands

Antoine Gardarin; Eric Garnier; Pascal Carrère; Pablo Cruz; Donato Andueza; Anne Bonis; Marie-Pascale Colace; Bertrand Dumont; Michel Duru; Anne Farruggia; Stéphanie Gaucherand; Karl Grigulis; Eric Kernéïs; Sandra Lavorel; Frédérique Louault; Grégory Loucougaray; François Mesléard; Nicole Yavercovski; Elena Kazakou

1. Dry matter digestibility is a critical component of herbage nutritive value, a major service delivered by grasslands. The aim of this study was to test whether the dominance hypothesis applies to assess the impacts of environmental gradients and management regimes on thiscomponent of herbage nutritive value in permanent grasslands. 2. At the plant level, digestibility has been related to a number of functional traits, but whether this can be scaled up to the community level in species-rich grasslands and how such relationships are modulated by environmental conditions and management regimes remainunknown. Our primary objective was to test whether community-weighted means – species trait values weighted by the species abundance – of morphological, phenological and chemical traits could be used to explain variations in digestibility over a large range of climatic contexts,soil resource levels and management regimes. Our second objective was to explain variations in community digestibility within and among nine contrasting sites along large natural and man-induced environmental gradients.3. Over the whole data set, digestibility and most community-weighted means of traits responded to climatic factors and management regimes, but relations were not always significant when each site was considered separately. Community digestibility was significantly related to one or more plant traits within each site and to all of the measured traits when considering all the sites. Leaf dry matter content (LDMC) had the most consistent effects on digestibility, with a strikingly similar negative effect within each site. Potential evapotranspiration was negatively related to digestibility and contributed to explain a large part of the among-site variance. In addition, a low return interval of disturbance and a high disturbance intensity (biomass removal) were both associated with a high digestibility.4. Synthesis and applications. Disturbance regime, plant traits and local climate impacted dry matter digestibility roughly equally in grasslands. The effects of community composition on digestibility and its response to abiotic factors could be successfully captured by community weightedmeans of leaf dry matter content. This functional marker can be used to develop indicators and grassland management rules to support farmers in the refinement of their practices towards specific needs, such as target production outputs.

Collaboration


Dive into the Pablo Cruz's collaboration.

Top Co-Authors

Avatar

Michel Duru

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Claire Jouany

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Jean Pierre Theau

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Pauline Ansquer

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Florian Fort

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar

Jean-Pierre Theau

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Sandra Lavorel

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Eric Garnier

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard Joffre

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge