Florian Fort
University of Montpellier
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Florian Fort.
Journal of Ecology | 2017
Grégoire T. Freschet; Oscar J. Valverde-Barrantes; Caroline M. Tucker; Joseph M. Craine; M. Luke McCormack; Cyrille Violle; Florian Fort; Christopher B. Blackwood; Katherine Urban-Mead; Colleen M. Iversen; Anne Bonis; Louise H. Comas; Johannes H. C. Cornelissen; Ming Dong; Dali Guo; Sarah E. Hobbie; Robert J. Holdaway; Steven W. Kembel; Naoki Makita; V. G. Onipchenko; Catherine Picon-Cochard; Peter B. Reich; Enrique G. de la Riva; Stuart W. Smith; Nadejda A. Soudzilovskaia; Mark G. Tjoelker; David A. Wardle; Catherine Roumet
Summary Ecosystem functioning relies heavily on below-ground processes, which are largely regulated by plant fine-roots and their functional traits. However, our knowledge of fine-root trait distribution relies to date on local- and regional-scale studies with limited numbers of species, growth forms and environmental variation. We compiled a world-wide fine-root trait dataset, featuring 1115 species from contrasting climatic areas, phylogeny and growth forms to test a series of hypotheses pertaining to the influence of plant functional types, soil and climate variables, and the degree of manipulation of plant growing conditions on species fine-root trait variation. Most particularly, we tested the competing hypotheses that fine-root traits typical of faster return on investment would be most strongly associated with conditions of limiting versus favourable soil resource availability. We accounted for both data source and species phylogenetic relatedness. We demonstrate that: (i) Climate conditions promoting soil fertility relate negatively to fine-root traits favouring fast soil resource acquisition, with a particularly strong positive effect of temperature on fine-root diameter and negative effect on specific root length (SRL), and a negative effect of rainfall on root nitrogen concentration; (ii) Soil bulk density strongly influences species fine-root morphology, by favouring thicker, denser fine-roots; (iii) Fine-roots from herbaceous species are on average finer and have higher SRL than those of woody species, and N2-fixing capacity positively relates to root nitrogen; and (iv) Plants growing in pots have higher SRL than those grown in the field. Synthesis. This study reveals both the large variation in fine-root traits encountered globally and the relevance of several key plant functional types and soil and climate variables for explaining a substantial part of this variation. Climate, particularly temperature, and plant functional types were the two strongest predictors of fine-root trait variation. High trait variation occurred at local scales, suggesting that wide-ranging below-ground resource economics strategies are viable within most climatic areas and soil conditions.
PLOS ONE | 2015
Hélène Tribouillois; Florian Fort; Pablo Cruz; Raphaël Charles; Olivier Flores; Eric Garnier; Eric Justes
Cover crops can produce ecosystem services during the fallow period, as reducing nitrate leaching and producing green manure. Crop growth rate (CGR) and crop nitrogen acquisition rate (CNR) can be used as two indicators of the ability of cover crops to produce these services in agrosystems. We used leaf functional traits to characterise the growth strategies of 36 cover crops as an approach to assess their ability to grow and acquire N rapidly. We measured specific leaf area (SLA), leaf dry matter content (LDMC), leaf nitrogen content (LNC) and leaf area (LA) and we evaluated their relevance to characterise CGR and CNR. Cover crop species were positioned along the Leaf Economics Spectrum (LES), the SLA-LDMC plane, and the CSR triangle of plant strategies. LA was positively correlated with CGR and CNR, while LDMC was negatively correlated with CNR. All cover crops could be classified as resource-acquisitive species from their relative position on the LES and the SLA-LDMC plane. Most cover crops were located along the Competition/Ruderality axis in the CSR triangle. In particular, Brassicaceae species were classified as very competitive, which was consistent with their high CGR and CNR. Leaf functional traits, especially LA and LDMC, allowed to differentiate some cover crops strategies related to their ability to grow and acquire N. LDMC was lower and LNC was higher in cover crop than in wild species, pointing to an efficient acquisitive syndrome in the former, corresponding to the high resource availability found in agrosystems. Combining several leaf traits explained approximately half of the CGR and CNR variances, which might be considered insufficient to precisely characterise and rank cover crop species for agronomic purposes. We hypothesised that may be the consequence of domestication process, which has reduced the range of plant strategies and modified the leaf trait syndrome in cultivated species.
Journal of Applied Ecology | 2018
Agathe Roucou; Cyrille Violle; Florian Fort; Pierre Roumet; Martin Ecarnot; Denis Vile
1. Human selection, changes in environmental conditions and management practices drove the phenotypic trajectory of crops during domestication. The characterization of the crop domestication syndrome lies mostly on reproductive characters. However, biophysical and ecophysiological constraints during vegetative growth are also at play and can strongly impact crop phenotypes. It has been argued that a broadened examination of crop phenotypes through a functional trait-based lens should improve our understanding of the domestication syndrome. 2. We used a collection of 39 genotypes representative of key steps during tetraploid wheat domestication and grew them in a common garden experiment. We quantified the vegetative phenotype of each genotype through the measurements of 13 functional traits related to root, leaf and whole-plant dimensions. 3. In modern cultivars, compared to ancestral forms, leaf longevity was shorter, while net photosynthetic rate, leaf production rate and nitrogen content were higher. Modern cultivars had a shallower root system and exhibited a larger proportion of fine roots, preferring to invest biomass above-rather than below-ground. We found ancestral forms to be integrated phenotypes characterized by coordination between above-and below-ground functioning. Conversely, in modern forms, human selection appeared to have broken this coordination and to have generated a new type of network of trait covariations. 4. Synthesis and applications. The examination of leaf, root and whole-plant traits of wheat accessions indicated a strong shift in plant functional strategies over the course of domestication. Elite genotypes tended to better optimize resource-use acquisition strategies than ancestral ones. The characterization of the crop phenotype based on vegetative traits thus suggests a much more complete domestication syndrome. Our findings highlight the benefits of using a functional trait-based characterization of crop phenotypes to document the extent of domestication syndrome and to further advance the agroecological management of cereals.
Annals of Botany | 2018
François Vasseur; Kevin Sartori; Etienne Baron; Florian Fort; Elena Kazakou; Jules Segrestin; Eric Garnier; Denis Vile; Cyrille Violle
Background and aims The CSR classification categorizes plants as stress tolerators (S), ruderals (R) and competitors (C). Initially proposed as a general framework to describe ecological strategies across species, this scheme has recently been used to investigate the variation of strategies within species. For instance, ample variation along the S-R axis was found in Arabidopsis thaliana, with stress-tolerator accessions predominating in hot and dry regions, which was interpreted as a sign of functional adaptation to climate within the species. Methods In this study the range of CSR strategies within A. thaliana was evaluated across 426 accessions originating from North Africa to Scandinavia. A position in the CSR strategy space was allocated for every accession based on three functional traits: leaf area, leaf dry matter content (LDMC) and specific leaf area (SLA). Results were related to climate at origin and compared with a previous study performed on the same species. Furthermore, the role of natural selection in phenotypic differentiation between lineages was investigated with QST-FST comparisons, using the large amount of genetic information available for this species. Key Results Substantial variation in ecological strategies along the S-R axis was found in A. thaliana. By contrast with previous findings, stress-tolerator accessions predominated in cold climates, notably Scandinavia, where late flowering was associated with traits related to resource conservation, such as high LDMC and low SLA. Because of trait plasticity, variations in CSR classification in relation to growth conditions were also observed for the same genotypes. Conclusions There is a latitudinal gradient of ecological strategies in A. thaliana as a result of within-species adaptation to climate. Our study also underlines the importance of growth conditions and of the methodology used for trait measurement, notably age versus stage measurement, to infer the strength and direction of trait-environment relationships. This highlights the potential and limitations of the CSR classification in explaining functional adaptation to the environment.
Journal of Plant Ecology-uk | 2013
Florian Fort; Claire Jouany; Pablo Cruz
Functional Ecology | 2014
Florian Fort; Pablo Cruz; Claire Jouany
Environmental and Experimental Botany | 2015
Florian Fort; Pablo Cruz; Olivier Catrice; Antoine Delbrut; Manuel Luzarreta; Ciprian Stroia; Claire Jouany
Functional Ecology | 2017
Florian Fort; Florence Volaire; Lydie Guilioni; Karim Barkaoui; Marie-Laure Navas; Catherine Roumet
Journal of Vegetation Science | 2016
Florian Fort; Pablo Cruz; Eric Lecloux; Leandro Bittencourt de Oliveira; Ciprian Stroia; Jean‐Pierre Theau; Claire Jouany
Frontiers in Plant Science | 2015
Florian Fort; Claire Jouany; Pablo Cruz