Pablo D. Dans
Pasteur Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pablo D. Dans.
Nature Methods | 2016
Ivan Ivani; Pablo D. Dans; Agnes Noy; Alberto Pérez; Ignacio Faustino; Jürgen Walther; Pau Andrio; Ramon Goni; Alexandra Balaceanu; Guillem Portella; Federica Battistini; Josep Lluís Gelpí; Carlos González; Michele Vendruscolo; Charles A. Laughton; Sarah A. Harris; David A. Case; Modesto Orozco
We present parmbsc1, a force field for DNA atomistic simulation, which has been parameterized from high-level quantum mechanical data and tested for nearly 100 systems (representing a total simulation time of ∼140 μs) covering most of DNA structural space. Parmbsc1 provides high-quality results in diverse systems. Parameters and trajectories are available at http://mmb.irbbarcelona.org/ParmBSC1/.
Nucleic Acids Research | 2014
Marco Pasi; John H. Maddocks; David L. Beveridge; Thomas C. Bishop; David A. Case; Thomas E. Cheatham; Pablo D. Dans; B. Jayaram; Filip Lankaš; Charles A. Laughton; Jonathan S. Mitchell; Roman Osman; Modesto Orozco; Alberto Pérez; Daiva Petkevičiūtė; Nada Spackova; Jiri Sponer; Krystyna Zakrzewska; Richard Lavery
We present the results of microsecond molecular dynamics simulations carried out by the ABC group of laboratories on a set of B-DNA oligomers containing the 136 distinct tetranucleotide base sequences. We demonstrate that the resulting trajectories have extensively sampled the conformational space accessible to B-DNA at room temperature. We confirm that base sequence effects depend strongly not only on the specific base pair step, but also on the specific base pairs that flank each step. Beyond sequence effects on average helical parameters and conformational fluctuations, we also identify tetranucleotide sequences that oscillate between several distinct conformational substates. By analyzing the conformation of the phosphodiester backbones, it is possible to understand for which sequences these substates will arise, and what impact they will have on specific helical parameters.
Nucleic Acids Research | 2012
Pablo D. Dans; Alberto Perez; Ignacio Faustino; Richard Lavery; Modesto Orozco
The traditional mesoscopic paradigm represents DNA as a series of base-pair steps whose energy response to equilibrium perturbations is elastic, with harmonic oscillations (defining local stiffness) around a single equilibrium conformation. In addition, base sequence effects are often analysed as a succession of independent XpY base-pair steps (i.e. a nearest-neighbour (NN) model with only 10 unique cases). Unfortunately, recent massive simulations carried out by the ABC consortium suggest that the real picture of DNA flexibility may be much more complex. The paradigm of DNA flexibility therefore needs to be revisited. In this article, we explore in detail one of the most obvious violations of the elastic NN model of flexibility: the bimodal distributions of some helical parameters. We perform here an in-depth statistical analysis of a very large set of MD trajectories and also of experimental structures, which lead to very solid evidence of bimodality. We then suggest ways to improve mesoscopic models to account for this deviation from the elastic regime.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Ana Cuervo; Pablo D. Dans; José L. Carrascosa; Modesto Orozco; G. Gomila; Laura Fumagalli
Significance The strength of DNA–DNA and DNA–ligand electrostatic interactions crucially depends on the electric polarizability of DNA, represented by its dielectric constant. This has remained unknown owing to the lack of experimental techniques able to measure it. Here, we experimentally determined the dielectric constant of double-stranded DNA in a native condensed state inside a single bacteriophage as well as the dielectric constants of the protein shell and tail that compose the viral capsid using scanning force microscopy. We supported the experimental data by theoretically determining the DNA dielectric constant using atomistic simulations. Both approaches yield a dielectric constant of DNA around 8, sensibly higher than commonly assumed, thus revealing a DNA intrinsic property essential for realistic computational description of DNA. The electric polarizability of DNA, represented by the dielectric constant, is a key intrinsic property that modulates DNA interaction with effector proteins. Surprisingly, it has so far remained unknown owing to the lack of experimental tools able to access it. Here, we experimentally resolved it by detecting the ultraweak polarization forces of DNA inside single T7 bacteriophages particles using electrostatic force microscopy. In contrast to the common assumption of low-polarizable behavior like proteins (εr ∼ 2–4), we found that the DNA dielectric constant is ∼8, considerably higher than the value of ∼3 found for capsid proteins. State-of-the-art molecular dynamic simulations confirm the experimental findings, which result in sensibly decreased DNA interaction free energy than normally predicted by Poisson–Boltzmann methods. Our findings reveal a property at the basis of DNA structure and functions that is needed for realistic theoretical descriptions, and illustrate the synergetic power of scanning probe microscopy and theoretical computation techniques.
Current Opinion in Structural Biology | 2016
Pablo D. Dans; Jürgen Walther; Hansel Gómez; Modesto Orozco
DNA is not only among the most important molecules in life, but a meeting point for biology, physics and chemistry, being studied by numerous techniques. Theoretical methods can help in gaining a detailed understanding of DNA structure and function, but their practical use is hampered by the multiscale nature of this molecule. In this regard, the study of DNA covers a broad range of different topics, from sub-Angstrom details of the electronic distributions of nucleobases, to the mechanical properties of millimeter-long chromatin fibers. Some of the biological processes involving DNA occur in femtoseconds, while others require years. In this review, we describe the most recent theoretical methods that have been considered to study DNA, from the electron to the chromosome, enriching our knowledge on this fascinating molecule.
Nucleic Acids Research | 2015
Giulia Rossetti; Pablo D. Dans; Irene Gómez-Pinto; Ivan Ivani; Carlos González; Modesto Orozco
The structure and dynamics of all the transversion and transition mismatches in three different DNA environments have been characterized by molecular dynamics simulations and NMR spectroscopy. We found that the presence of mismatches produced significant local structural alterations, especially in the case of purine transversions. Mismatched pairs often show promiscuous hydrogen bonding patterns, which interchange among each other in the nanosecond time scale. This therefore defines flexible base pairs, where breathing is frequent, and where distortions in helical parameters are strong, resulting in significant alterations in groove dimension. Even if the DNA structure is plastic enough to absorb the structural impact of the mismatch, local structural changes can be propagated far from the mismatch site, following the expected through-backbone and a previously unknown through-space mechanism. The structural changes related to the presence of mismatches help to understand the different susceptibility of mismatches to the action of repairing proteins.
Nucleic Acids Research | 2014
Pablo D. Dans; Ignacio Faustino; Federica Battistini; Krystyna Zakrzewska; Richard Lavery; Modesto Orozco
We have made a detailed study of one of the most surprising sources of polymorphism in B-DNA: the high twist/low twist (HT/LT) conformational change in the d(CpG) base pair step. Using extensive computations, complemented with database analysis, we were able to characterize the twist polymorphism in the d(CpG) step in all the possible tetranucleotide environment. We found that twist polymorphism is coupled with BI/BII transitions, and, quite surprisingly, with slide polymorphism in the neighboring step. Unexpectedly, the penetration of cations into the minor groove of the d(CpG) step seems to be the key element in promoting twist transitions. The tetranucleotide environment also plays an important role in the sequence-dependent d(CpG) polymorphism. In this connection, we have detected a previously unexplored intramolecular C-H···O hydrogen bond interaction that stabilizes the low twist state when 3′-purines flank the d(CpG) step. This work explains a coupled mechanism involving several apparently uncorrelated conformational transitions that has only been partially inferred by earlier experimental or theoretical studies. Our results provide a complete description of twist polymorphism in d(CpG) steps and a detailed picture of the molecular choreography associated with this conformational change.
Nucleic Acids Research | 2016
Pablo D. Dans; Linda Danilāne; Ivan Ivani; Tomáš Dršata; Filip Lankaš; Jürgen Walther; Ricard Illa Pujagut; Federica Battistini; Josep Lluís Gelpí; Richard Lavery; Modesto Orozco
We present a systematic study of the long-timescale dynamics of the Drew–Dickerson dodecamer (DDD: d(CGCGAATTGCGC)2) a prototypical B-DNA duplex. Using our newly parameterized PARMBSC1 force field, we describe the conformational landscape of DDD in a variety of ionic environments from minimal salt to 2 M Na+Cl− or K+Cl−. The sensitivity of the simulations to the use of different solvent and ion models is analyzed in detail using multi-microsecond simulations. Finally, an extended (10 μs) simulation is used to characterize slow and infrequent conformational changes in DDD, leading to the identification of previously uncharacterized conformational states of this duplex which can explain biologically relevant conformational transitions. With a total of more than 43 μs of unrestrained molecular dynamics simulation, this study is the most extensive investigation of the dynamics of the most prototypical DNA duplex.
Amino Acids | 2010
Alex de Marco; Pablo D. Dans; Anna Knezevich; Paolo Maiuri; Sergio Pantano; Alessandro Marcello
The histone chaperone nucleosome assembly protein, hNAP-1, is a host cofactor for the activity of the human immunodeficiency virus type 1 (HIV-1) transactivator Tat. The interaction between these two proteins has been shown to be important for Tat-mediated transcriptional activation and for efficient viral infection. Visualization of HIV-1 transcription and fluorescence resonance energy transfer experiments performed in this work demonstrate that hNAP-1 is not recruited to the site of Tat activity but the two proteins interact at the nuclear rim. These data are consistent with a mechanism that requires hNAP-1 for the transport of Tat within the nucleus rather than for the remodeling of nucleosomes on the provirus. Protein–protein docking and molecular modeling of the complex suggest that this interaction occurs between the basic domain of Tat and the histone-binding domain. The combination of theoretical and whole cell studies provided new insights into the functional significance of the Tat:hNAP-1 recognition.
Nucleic Acids Research | 2017
Pablo D. Dans; Ivan Ivani; Guillem Portella; Carlos González; Modesto Orozco
Abstract Last generation of force-fields are raising expectations on the quality of molecular dynamics (MD) simulations of DNA, as well as to the belief that theoretical models can substitute experimental ones in several cases. However these claims are based on limited benchmarks, where MD simulations have shown the ability to reproduce already existing ‘experimental models’, which in turn, have an unclear accuracy to represent DNA conformation in solution. In this work we explore the ability of different force-fields to predict the structure of two new B-DNA dodecamers, determined herein by means of 1H nuclear magnetic resonance (NMR). The study allowed us to check directly for experimental NMR observables on duplexes previously not solved, and also to assess the reliability of ‘experimental structures’. We observed that technical details in the annealing procedures can induce non-negligible local changes in the final structures. We also found that while not all theoretical simulations are equally reliable, those obtained using last generation of AMBER force-fields (BSC1 and BSC0OL15) show predictive power in the multi-microsecond timescale and can be safely used to reproduce global structure of DNA duplexes and fine sequence-dependent details.