Pablo De Ioannes
Icahn School of Medicine at Mount Sinai
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pablo De Ioannes.
Journal of Biological Chemistry | 2004
Pablo De Ioannes; Bruno Moltedo; Harold Oliva; Rodrigo Pacheco; Fernando Faunes; Alfredo E. De Ioannes; María Inés Becker
We describe here the structure of the hemocyanin from the Chilean gastropod Concholepas concholepas (CCH), emphasizing some attributes that make it interesting among molluscan hemocyanins. CCH exhibits a predominant didecameric structure as revealed by electron microscopy and a size of 8 MDa by gel filtration, and, in contrast with other mollusc hemocyanins, its stabilization does not require additional Ca2+ and/or Mg2+ in the medium. Polyacrylamide gel electrophoresis studies, analyses by a MonoQ FPLC column, and Western blots with specific monoclonal antibodies showed that CCH is made by two subunits noncovalently linked, named CCH-A and CCH-B, with molecular masses of 405 and 350 kDa, respectively. Interestingly, one of the subunits undergoes changes within the macromolecule; we demonstrated that CCH-A has an autocleavage site that under reducing conditions is cleaved to yield two polypeptides, CCH-A1 (300 kDa) and CCH-A2 (108 kDa), whereas CCH-B remains unchanged. The CCH-A nick occurs at 4 °C, increases at 37 °C, and is not inhibited by the addition of protease inhibitors and/or divalent cations. Since the CCH structure is a heterodimer, we investigated whether subunits would be either intermingled, forming heterodecamers, or assembled as two homogeneous decamers. Light scattering and electron microscope studies of the in vitro reassociation of purified CCH subunits demonstrated that the sole addition of Mg2+ is needed for its reassembly into the native decameric molecule; no homodecamer reorganization was found with either CCH-A or CCH-B subunits alone. Our evidence showed that C. concholepas hemocyanin is an unusual example of heterodecameric organization.
Journal of Experimental Medicine | 2012
Shruti Malu; Pablo De Ioannes; Mikhail Kozlov; Marsha Greene; Dailia Francis; Mary Hanna; Jesse Pena; Carlos R. Escalante; Aya Kurosawa; Hediye Erdjument-Bromage; Paul Tempst; Noritaka Adachi; Paolo Vezzoni; Anna Villa; Aneel K. Aggarwal; Patricia Cortes
Interactions of Artemis with DNA Ligase IV and DNA-PKcs are required for efficient coding joint formation.
International Immunopharmacology | 2009
María Inés Becker; Alejandra Fuentes; Miguel del Campo; Augusto Manubens; Esteban Nova; Harold Oliva; Fernando Faunes; M.A. Valenzuela; Marcelo Campos-Vallette; A.E. Aliaga; Jorge Ferreira; Alfredo E. De Ioannes; Pablo De Ioannes; Bruno Moltedo
Hemocyanin, the oxygen transporter metallo-glycoprotein from mollusks, shows strong relationship between its notable structural features and intrinsic immunomodulatory effects. Here we investigated the individual contribution of CCHA and CCHB subunits from Concholepas hemocyanin (CCH) to in vivo humoral immune response and their pre-clinical evaluation as immunotherapeutic agent in a mice bladder cancer model, in relation to their biochemical properties. To this end, subunits were purified and well characterized. Homogeneous subunits were obtained by anionic exchange chromatography, and its purity assessed by electrophoretic and immunochemical methods. While each CCH subunit contains eight functional units showing partial cross reaction, the vibrational spectral analysis showed several spectral differences, suggesting structural differences between them. In addition, we demonstrated differences in the carbohydrate content: CCHA had a 3.6% w/w sugar with both N- and O-linked moieties. In turn, CCHB had a 2.5% w/w sugar with N-linked, while O-linked moieties were nearly absent. Considering these differences, it was not possible to predict a priori whether the immunogenic and immunotherapeutic properties of subunits might be similar. Surprisingly, both subunits by itself induced a humoral response, and showed an antitumor effect in the bladder carcinoma cell line MBT-2. However, when immunologic parameters were analyzed, CCHA showed better efficiency than CCHB. No allergic reactions or any toxic effects were observed in mice treated with CCHA, sustaining its potential therapeutic use. Our study supports that CCHA subunit accounts for the most important features involved in the immunogenicity of CCH, such as better hydrophilicity and higher content of carbohydrates.
PLOS ONE | 2014
Sergio Arancibia; Cecilia Espinoza; Fabián Salazar; Miguel del Campo; Ricardo Tampe; Ta-Ying Zhong; Pablo De Ioannes; Bruno Moltedo; Jorge Ferreira; Ed C. Lavelle; Augusto Manubens; Alfredo E. De Ioannes; María Inés Becker
Hemocyanins, the huge oxygen-transporting glycoproteins of some mollusks, are used as immunomodulatory proteins with proven anti-cancer properties. The biodiversity of hemocyanins has promoted interest in identifying new anti-cancer candidates with improved immunological properties. Hemocyanins promote Th1 responses without known side effects, which make them ideal for long-term sustained treatment of cancer. In this study, we evaluated a novel hemocyanin from the limpet/gastropod Fissurella latimarginata (FLH). This protein has the typical hollow, cylindrical structure of other known hemocyanins, such as the keyhole limpet hemocyanin (KLH) and the Concholepas hemocyanin (CCH). FLH, like the KLH isoforms, is composed of a single type of polypeptide with exposed N- and O-linked oligosaccharides. However, its immunogenicity was significantly greater than that of KLH and CCH, as FLH induced a stronger humoral immune response and had more potent anti-tumor activity, delaying tumor growth and increasing the survival of mice challenged with B16F10 melanoma cells, in prophylactic and therapeutic settings. Additionally, FLH-treated mice demonstrated increased IFN-γ production and higher numbers of tumor-infiltrating CD4+ lymphocytes. Furthermore, in vitro assays demonstrated that FLH, but not CCH or KLH, stimulated the rapid production of pro-inflammatory cytokines (IL-6, IL-12, IL-23 and TNF-α) by dendritic cells, triggering a pro-inflammatory milieu that may explain its enhanced immunological activity. Moreover, this effect was abolished when deglycosylated FLH was used, suggesting that carbohydrates play a crucial role in the innate immune recognition of this protein. Altogether, our data demonstrate that FLH possesses increased anti-tumor activity in part because it activates a more potent innate immune response in comparison to other known hemocyanins. In conclusion, FLH is a potential new marine adjuvant for immunization and possible cancer immunotherapy.
Cell Reports | 2012
Pablo De Ioannes; Shruti Malu; Patricia Cortes; Aneel K. Aggarwal
DNA ligase IV (LigIV) and Artemis are central components of the nonhomologous end-joining (NHEJ) machinery that is required for V(D)J recombination and the maintenance of genomic integrity in mammalian cells. We report here crystal structures of the LigIV DNA binding domain (DBD) in both its apo form and in complex with a peptide derived from the Artemis C-terminal region. We show that LigIV interacts with Artemis through an extended hydrophobic surface. In particular, we find that the helix α2 in LigIV-DBD is longer than in other mammalian ligases and presents residues that specifically interact with the Artemis peptide, which adopts a partially helical conformation on binding. Mutations of key residues on the LigIV-DBD hydrophobic surface abolish the interaction. Together, our results provide structural insights into the specificity of the LigIV-Artemis interaction and how the enzymatic activities of the two proteins may be coordinated during NHEJ.
Hybridoma and Hybridomics | 2002
Harold Oliva; Bruno Moltedo; Pablo De Ioannes; Fernando Faunes; Alfredo E. De Ioannes; María Inés Becker
We studied the reactivity of mouse monoclonal antibodies (MAbs) against the hemocyanin from the Chilean marine gastropod Concholepas concholepas (CCH). This protein has been successfully used as a carrier to produce antibodies to haptens and peptides. All MAbs (13) belonging to IgG subclass exhibit dissociation constants (K(d)) from 1 x 10(-7) M to 1 x 10(-9) M. MAbs were characterized by enzyme-linked immunosorbant assay (ELISA) using CCH treated with different procedures, including dissociation into CCH-A and CCH-B subunits, Western blot, enzymatic digestion, chemical deglycosylation, and thermal denaturation. MAbs were classified into three categories, according to subunit specificity by ELISA. The epitope distribution shows that CCH subunits display common epitopes (group I, 5 MAbs, 1H5, 2A8, 3A5, 3B3, and 3E3), as well as specific epitopes for CCH-A subunits (group II, 3 MAbs, 1B8, 4D8, and 8E5) and for CCH-B subunits (group III, 5 MAbs, 1A4, 1E4, 2H10, 3B7, and 7B4). The results can be summarized as follows: (1). six antibodies react with thermal denatured CCH, suggesting that they recognize linear epitopes, whereas seven recognize conformational epitopes; (2). oxidation of carbohydrate moieties does not affect the binding of the MAbs; (3). enzymatic digestion of CCH decreases the reactivity of all antibodies irrespective of the protease used (elastase or trypsin); (4). bringing together the above data, in addition to epitopic complementarity analysis, we identified 12 different epitopes on the CCH molecule recognized by these MAbs. The anti-CCH MAbs presented here can be useful tools to understand the subunit organization of the CCH and its complex structure, which can explain its immunogenic and immunostimulating properties in mammals.
Revista Medica De Chile | 2011
Miguel del Campo; Sergio Arancibia; Esteban Nova; Fabián Salazar; Andrea González; Bruno Moltedo; Pablo De Ioannes; Jorge Ferreira; Augusto Manubens; María Inés Becker
Hemocyanins, the giant oxygen transporter glycoproteins of diverse mollusks, are xenogenic to the mammalian immune system and they display a remarkable immuno-genicity. Therefore they are ideal non-specific immunostimulants to treat some types of cancer. They are used as an alternative therapy for superficial urinary bladder cancer (SBC), that has been traditionally treated with Bacillus Calmette-Guerin (BCG). In contrast to BCG, hemocyanins do not cause side-effects, making them ideal for long-term repetitive treatments. Hemocyanins have also been exploited as carriers to develop antibodies against hapten molecules and peptides, as carrier-adjuvants for cutting-edge vaccines against cancer, drug addiction, and infectious diseases and in the diagnosis of parasitic diseases, such as Schistosomiasis. The hemocyanin from Megathura crenulata, also known as keyhole limpet hemocyanin (KLH), has been used for over thirty years for the purposes described above. More recently, hemoc yanin from the Chilean mollusk Concholepas concholepas (CCH) has proved to be a reliable alternative to KLH, either as carrier protein, and as a likely alternative for the immunotherapy of SBC. Despite KLH and CCH differ significantly in their origin and structure, we have demonstrated that both hemocyanins stimulate the immune system of mammals in a similar way by inducing a potent Thl-polarized cellular and humoral response.
Nucleic Acids Research | 2011
Pablo De Ioannes; Carlos R. Escalante; Aneel K. Aggarwal
Interferon regulatory factors IRF-3 and IRF-7 are transcription factors essential in the activation of interferon-β (IFN-β) gene in response to viral infections. Although, both proteins recognize the same consensus IRF binding site AANNGAAA, they have distinct DNA binding preferences for sites in vivo. The X-ray structures of IRF-3 and IRF-7 DNA binding domains (DBDs) bound to IFN-β promoter elements revealed flexibility in the loops (L1–L3) and the residues that make contacts with the target sequence. To characterize the conformational changes that occur on DNA binding and how they differ between IRF family members, we have solved the X-ray structures of IRF-3 and IRF-7 DBDs in the absence of DNA. We found that loop L1, carrying the conserved histidine that interacts with the DNA minor groove, is disordered in apo IRF-3 but is ordered in apo IRF-7. This is reflected in differences in DNA binding affinities when the conserved histidine in loop L1 is mutated to alanine in the two proteins. The stability of loop L1 in IRF-7 derives from a unique combination of hydrophobic residues that pack against the protein core. Together, our data show that differences in flexibility of loop L1 are an important determinant of differential IRF-DNA binding.
Journal of the American Chemical Society | 2017
Cyril Charlier; Guillaume Bouvignies; Philippe Pelupessy; Astrid Walrant; Rodrigue Marquant; Mikhail E. Kozlov; Pablo De Ioannes; Nicolas Bolik-Coulon; Sandrine Sagan; Patricia Cortes; Aneel K. Aggarwal; Ludovic Carlier; Fabien Ferrage
Many intrinsically disordered proteins (IDPs) and protein regions (IDRs) engage in transient, yet specific, interactions with a variety of protein partners. Often, if not always, interactions with a protein partner lead to partial folding of the IDR. Characterizing the conformational space of such complexes is challenging: in solution-state NMR, signals of the IDR in the interacting region become broad, weak, and often invisible, while X-ray crystallography only provides information on fully ordered regions. There is thus a need for a simple method to characterize both fully and partially ordered regions in the bound state of IDPs. Here, we introduce an approach based on monitoring chemical exchange by NMR to investigate the state of an IDR that folds upon binding through the observation of the free state of the protein. Structural constraints for the bound state are obtained from chemical shifts, and site-specific dynamics of the bound state are characterized by relaxation rates. The conformation of the interacting part of the IDR was determined and subsequently docked onto the structure of the folded partner. We apply the method to investigate the interaction between the disordered C-terminal region of Artemis and the DNA binding domain of Ligase IV. We show that we can accurately reproduce the structure of the core of the complex determined by X-ray crystallography and identify a broader interface. The method is widely applicable to the biophysical investigation of complexes of disordered proteins and folded proteins.
Immunity | 2005
Kelly L. West; Netai Singha; Pablo De Ioannes; Lynne Lacomis; Hediye Erdjument-Bromage; Paul Tempst; Patricia Cortes