Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pablo I. Nikel is active.

Publication


Featured researches published by Pablo I. Nikel.


Nature Reviews Microbiology | 2014

Biotechnological domestication of pseudomonads using synthetic biology

Pablo I. Nikel; Esteban Martínez-García; Víctor de Lorenzo

Much of contemporary synthetic biology research relies on the use of bacterial chassis for plugging-in and plugging-out genetic circuits and new-to-nature functionalities. However, the microorganisms that are the easiest to manipulate in the laboratory are often suboptimal for downstream industrial applications, which can involve physicochemical stress and harsh operating conditions. In this Review, we advocate the use of environmental Pseudomonas strains as model organisms that are pre-endowed with the metabolic, physiological and stress-endurance traits that are demanded by current and future synthetic biology and biotechnological needs.


Environmental Microbiology | 2013

The Entner–Doudoroff pathway empowers Pseudomonas putida KT2440 with a high tolerance to oxidative stress

Max Chavarría; Pablo I. Nikel; Danilo Pérez-Pantoja; Víctor de Lorenzo

Glucose catabolism of Pseudomonas putida is carried out exclusively through the Entner-Doudoroff (ED) pathway due to the absence of 6-phosphofructokinase. In order to activate the Embden-Meyerhof-Parnas (EMP) route we transferred the pfkA gene from Escherichia coli to a P. putida wild-type strain as well as to an eda mutant, i.e. lacking 2-keto-3-deoxy-6-phosphogluconate aldolase. PfkA(E. coli) failed to redirect the carbon flow from the ED route towards the EMP pathway, suggesting that ED was essential for sugar catabolism. The presence of PfkA(E. coli) was detrimental for growth, which could be traced to the reduction of ATP and NAD(P)H pools along with alteration of the NAD(P)H/NADP(+) ratio. Pseudomonas putida cells carrying PfkA(E. coli) became highly sensitive to diamide and hydrogen peroxide, the response to which is very demanding of NADPH. The inhibitory effect of PfkA(E. coli) could in part be relieved by methionine, the synthesis of which relies much on NADPH. These results expose the role of the ED pathway for generating the redox currency (NADPH) that is required for counteracting oxidative stress. It is thus likely that environmental bacteria that favour the ED pathway over the EMP pathway do so in order to gear their aerobic metabolism to endure oxidative-related insults.


Applied and Environmental Microbiology | 2006

New Recombinant Escherichia coli Strain Tailored for the Production of Poly(3-Hydroxybutyrate) from Agroindustrial By-Products

Pablo I. Nikel; Alejandra de Almeida; Evelia C. Melillo; Miguel A. Galvagno; M. Julia Pettinari

ABSTRACT A recombinant E. coli strain (K24K) was constructed and evaluated for poly(3-hydroxybutyrate) (PHB) production from whey and corn steep liquor as main carbon and nitrogen sources. This strain bears the pha biosynthetic genes from Azotobacter sp. strain FA8 expressed from a T5 promoter under the control of the lactose operator. K24K does not produce the lactose repressor, ensuring constitutive expression of genes involved in lactose transport and utilization. PHB was efficiently produced by the recombinant strain grown aerobically in fed-batch cultures in a laboratory scale bioreactor on a semisynthetic medium supplemented with the agroindustrial by-products. After 24 h, cells accumulated PHB to 72.9% of their cell dry weight, reaching a volumetric productivity of 2.13 g PHB per liter per hour. Physical analysis of PHB recovered from the recombinants showed that its molecular weight was similar to that of PHB produced by Azotobacter sp. strain FA8 and higher than that of the polymer from Cupriavidus necator and that its glass transition temperature was approximately 20°C higher than those of PHBs from the natural producer strains.


Applied and Environmental Microbiology | 2006

Poly(3-Hydroxybutyrate) Synthesis by Recombinant Escherichia coli arcA Mutants in Microaerobiosis

Pablo I. Nikel; M. Julia Pettinari; Miguel A. Galvagno; Beatriz S. Méndez

ABSTRACT We assessed the effects of different arcA mutations on poly(3-hydroxybutyrate) (PHB) synthesis in recombinant Escherichia coli strains carrying the pha synthesis genes from Azotobacter sp. strain FA8. The arcA mutations used were an internal deletion and the arcA2 allele, a leaky mutation for some of the characteristics of the Arc phenotype which confers high respiratory capacity. PHB synthesis was not detected in the wild-type strain in shaken flask cultures under low-oxygen conditions, while ArcA mutants gave rise to polymer accumulation of up to 24% of their cell dry weight. When grown under microaerobic conditions in a bioreactor, the arcA deletion mutant reached a PHB content of 27% ± 2%. Under the same conditions, higher biomass and PHB concentrations were observed for the strain bearing the arcA2 allele, resulting in a PHB content of 35% ± 3%. This strain grew in a simple medium at a specific growth rate of 0.69 ± 0.07 h−1, whereas the deletion mutant needed several nutritional additives and showed a specific growth rate of 0.56 ± 0.06 h−1. The results presented here suggest that arcA mutations could play a role in heterologous PHB synthesis in microaerobiosis.


Environmental Microbiology | 2016

The revisited genome of Pseudomonas putida KT2440 enlightens its value as a robust metabolic chassis

Eugeni Belda; Ruben G. A. van Heck; Maria Jose Lopez-Sanchez; Stéphane Cruveiller; Valérie Barbe; Claire M. Fraser; Hans-Peter Klenk; Jörn Petersen; Anne Morgat; Pablo I. Nikel; David Vallenet; Zoé Rouy; Agnieszka Sekowska; Vitor A. P. Martins dos Santos; Víctor de Lorenzo; Antoine Danchin; Claudine Médigue

By the time the complete genome sequence of the soil bacterium Pseudomonas putida KT2440 was published in 2002 (Nelson et al., ) this bacterium was considered a potential agent for environmental bioremediation of industrial waste and a good colonizer of the rhizosphere. However, neither the annotation tools available at that time nor the scarcely available omics data-let alone metabolic modeling and other nowadays common systems biology approaches-allowed them to anticipate the astonishing capacities that are encoded in the genetic complement of this unique microorganism. In this work we have adopted a suite of state-of-the-art genomic analysis tools to revisit the functional and metabolic information encoded in the chromosomal sequence of strain KT2440. We identified 242 new protein-coding genes and re-annotated the functions of 1548 genes, which are linked to almost 4900 PubMed references. Catabolic pathways for 92 compounds (carbon, nitrogen and phosphorus sources) that could not be accommodated by the previously constructed metabolic models were also predicted. The resulting examination not only accounts for some of the known stress tolerance traits known in P. putida but also recognizes the capacity of this bacterium to perform difficult redox reactions, thereby multiplying its value as a platform microorganism for industrial biotechnology.


Microbial Cell Factories | 2014

Pseudomonas 2.0: genetic upgrading of P. putida KT2440 as an enhanced host for heterologous gene expression

Esteban Martínez-García; Pablo I. Nikel; Tomás Aparicio; Víctor de Lorenzo

BackgroundBecause of its adaptability to sites polluted with toxic chemicals, the model soil bacterium Pseudomonas putida is naturally endowed with a number of metabolic and stress-endurance qualities which have considerable value for hosting energy-demanding and redox reactions thereof. The growing body of knowledge on P. putida strain KT2440 has been exploited for the rational design of a derivative strain in which the genome has been heavily edited in order to construct a robust microbial cell factory.ResultsEleven non-adjacent genomic deletions, which span 300 genes (i.e., 4.3% of the entire P. putida KT2440 genome), were eliminated; thereby enhancing desirable traits and eliminating attributes which are detrimental in an expression host. Since ATP and NAD(P)H availability – as well as genetic instability, are generally considered to be major bottlenecks for the performance of platform strains, a suite of functions that drain high-energy phosphate from the cells and/or consume NAD(P)H were targeted in particular, the whole flagellar machinery. Four prophages, two transposons, and three components of DNA restriction-modification systems were eliminated as well. The resulting strain (P. putida EM383) displayed growth properties (i.e., lag times, biomass yield, and specific growth rates) clearly superior to the precursor wild-type strain KT2440. Furthermore, it tolerated endogenous oxidative stress, acquired and replicated exogenous DNA, and survived better in stationary phase. The performance of a bi-cistronic GFP-LuxCDABE reporter system as a proxy of combined metabolic vitality, revealed that the deletions in P. putida strain EM383 brought about an increase of >50% in the overall physiological vigour.ConclusionThe rationally modified P. putida strain allowed for the better functional expression of implanted genes by directly improving the metabolic currency that sustains the gene expression flow, instead of resorting to the classical genetic approaches (e.g., increasing the promoter strength in the DNA constructs of interest).


Current Opinion in Chemical Biology | 2016

From dirt to industrial applications: Pseudomonas putida as a Synthetic Biology chassis for hosting harsh biochemical reactions

Pablo I. Nikel; Max Chavarría; Antoine Danchin; Víctor de Lorenzo

The soil bacterium Pseudomonas putida is endowed with a central carbon metabolic network capable of fulfilling high demands of reducing power. This situation arises from a unique metabolic architecture that encompasses the partial recycling of triose phosphates to hexose phosphates-the so-called EDEMP cycle. In this article, the value of P. putida as a bacterial chassis of choice for contemporary, industrially-oriented metabolic engineering is addressed. The biochemical properties that make this bacterium adequate for hosting biotransformations involving redox reactions as well as toxic compounds and intermediates are discussed. Finally, novel developments and open questions in the continuous quest for an optimal microbial cell factory are presented at the light of current and future needs in the area of biocatalysis.


Applied and Environmental Microbiology | 2007

Effects of Granule-Associated Protein PhaP on Glycerol-Dependent Growth and Polymer Production in Poly(3-Hydroxybutyrate)-Producing Escherichia coli†

Alejandra de Almeida; Pablo I. Nikel; Andrea M. Giordano; M. Julia Pettinari

ABSTRACT Polyhydroxyalkanoates (PHAs) are accumulated as intracellular granules by many bacteria under unfavorable conditions, enhancing their fitness and stress resistance. Poly(3-hydroxybutyrate) (PHB) is the most widespread and best-known PHA. Apart from the genes that catalyze polymer biosynthesis, natural PHA producers have several genes for proteins involved in granule formation and/or with regulatory functions, such as phasins, that have been shown to affect polymer synthesis. This study evaluates the effect of PhaP, a phasin, on bacterial growth and PHB accumulation from glycerol in bioreactor cultures of recombinant Escherichia coli carrying phaBAC from Azotobacter sp. strain FA8. Cells expressing phaP grew more, and accumulated more PHB, both using glucose and using glycerol as carbon sources. When cultures were grown in a bioreactor using glycerol, PhaP-bearing cells produced more polymer (2.6 times) and more biomass (1.9 times) than did those without the phasin. The effect of this protein on growth promotion and polymer accumulation is expected to be even greater in high-density cultures, such as those used in the industrial production of the polymer. The recombinant strain presented in this work has been successfully used for the production of PHB from glycerol in bioreactor studies, allowing the production of 7.9 g/liter of the polymer in a semisynthetic medium in 48-h batch cultures. The development of bacterial strains that can efficiently use this substrate can help to make the industrial production of PHAs economically feasible.


Microbial Cell Factories | 2015

Genome reduction boosts heterologous gene expression in Pseudomonas putida

Sarah Lieder; Pablo I. Nikel; Víctor de Lorenzo; Ralf Takors

BackgroundThe implementation of novel platform organisms to be used as microbial cell factories in industrial applications is currently the subject of intense research. Ongoing efforts include the adoption of Pseudomonas putida KT2440 variants with a reduced genome as the functional chassis for biotechnological purposes. In these strains, dispensable functions removed include flagellar motility (1.1% of the genome) and a number of open reading frames expected to improve genotypic and phenotypic stability of the cells upon deletion (3.2% of the genome).ResultsIn this study, two previously constructed multiple-deletion P. putida strains were systematically evaluated as microbial cell factories for heterologous protein production and compared to the parental bacterium (strain KT2440) with regards to several industrially-relevant physiological traits. Energetic parameters were quantified at different controlled growth rates in continuous cultivations and both strains had a higher adenosine triphosphate content, increased adenylate energy charges, and diminished maintenance demands than the wild-type strain. Under all the conditions tested the mutants also grew faster, had enhanced biomass yields and showed higher viability, and displayed increased plasmid stability than the parental strain. In addition to small-scale shaken-flask cultivations, the performance of the genome-streamlined strains was evaluated in larger scale bioreactor batch cultivations taking a step towards industrial growth conditions. When the production of the green fluorescent protein (used as a model heterologous protein) was assessed in these cultures, the mutants reached a recombinant protein yield with respect to biomass up to 40% higher than that of P. putida KT2440.ConclusionsThe two streamlined-genome derivatives of P. putida KT2440 outcompeted the parental strain in every industrially-relevant trait assessed, particularly under the working conditions of a bioreactor. Our results demonstrate that these genome-streamlined bacteria are not only robust microbial cell factories on their own, but also a promising foundation for further biotechnological applications.


Metabolic Engineering | 2013

Engineering an anaerobic metabolic regime in Pseudomonas putida KT2440 for the anoxic biodegradation of 1,3-dichloroprop-1-ene.

Pablo I. Nikel; Víctor de Lorenzo

Pseudomonas putida KT2440, a microbial cell factory of reference for industrial whole-cell biocatalysis, is unable to support biochemical reactions that occur under anoxic conditions, limiting its utility for a large number of relevant biotransformations. Unlike (facultative) anaerobes, P. putida resorts to NADH oxidation via an oxic respiratory chain and completely lacks a true fermentation metabolism. Therefore, it cannot achieve the correct balances of energy and redox couples (i.e., ATP/ADP and NADH/NAD(+)) that are required to sustain an O(2)-free lifestyle. To overcome this state of affairs, the acetate kinase (ackA) gene of the facultative anaerobe Escherichia coli and the pyruvate decarboxylase (pdc) and alcohol dehydrogenase II (adhB) genes of the aerotolerant Zymomonas mobilis were knocked-in to a wild-type P. putida strain. Biochemical and genetic assays showed that conditional expression of the entire enzyme set allowed the engineered bacteria to adopt an anoxic regime that maintained considerable metabolic activity. The resulting strain was exploited as a host for the heterologous expression of a 1,3-dichloroprop-1-ene degradation pathway recruited from Pseudomonas pavonaceae 170, enabling the recombinants to degrade this recalcitrant chlorinated compound anoxically. These results underscore the value of P. putida as a versatile agent for biotransformations able to function at progressively lower redox statuses.

Collaboration


Dive into the Pablo I. Nikel's collaboration.

Top Co-Authors

Avatar

Víctor de Lorenzo

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

M. Julia Pettinari

Facultad de Ciencias Exactas y Naturales

View shared research outputs
Top Co-Authors

Avatar

Beatriz S. Méndez

Facultad de Ciencias Exactas y Naturales

View shared research outputs
Top Co-Authors

Avatar

Alejandra de Almeida

Facultad de Ciencias Exactas y Naturales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Danilo Pérez-Pantoja

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Esteban Martínez-García

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Max Chavarría

University of Costa Rica

View shared research outputs
Top Co-Authors

Avatar

Andrea M. Giordano

Facultad de Ciencias Exactas y Naturales

View shared research outputs
Top Co-Authors

Avatar

Jimena A. Ruiz

Facultad de Ciencias Exactas y Naturales

View shared research outputs
Researchain Logo
Decentralizing Knowledge