Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pablo M. Peixoto is active.

Publication


Featured researches published by Pablo M. Peixoto.


Biochimica et Biophysica Acta | 2011

Is mPTP the gatekeeper for necrosis, apoptosis, or both?

Kathleen W. Kinnally; Pablo M. Peixoto; Shin Young Ryu; Laurent M. Dejean

Permeabilization of the mitochondrial membranes is a crucial step in apoptosis and necrosis. This phenomenon allows the release of mitochondrial death factors, which trigger or facilitate different signaling cascades ultimately causing the execution of the cell. The mitochondrial permeability transition pore (mPTP) has long been known as one of the main regulators of mitochondria during cell death. mPTP opening can lead to matrix swelling, subsequent rupture of the outer membrane, and a nonspecific release of intermembrane space proteins into the cytosol. While mPTP was purportedly associated with early apoptosis, recent observations suggest that mitochondrial permeabilization mediated by mPTP is generally more closely linked to events of late apoptosis and necrosis. Mechanisms of mitochondrial membrane permeabilization during cell death, involving three different mitochondrial channels, have been postulated. These include the mPTP in the inner membrane, and the mitochondrial apoptosis-induced channel (MAC) and voltage-dependent anion-selective channel (VDAC) in the outer membrane. New developments on mPTP structure and function, and the involvement of mPTP, MAC, and VDAC in permeabilization of mitochondrial membranes during cell death are explored. This article is part of a Special Issue entitled Mitochondria: the deadly organelle.


eLife | 2013

Bax and Bak function as the outer membrane component of the mitochondrial permeability pore in regulating necrotic cell death in mice.

Jason Karch; Jennifer Q. Kwong; Adam R. Burr; Michelle A. Sargent; John W. Elrod; Pablo M. Peixoto; Sonia Martinez-Caballero; Hanna Osinska; Emily H. Cheng; Jeffrey Robbins; Kathleen W. Kinnally; Jeffery D. Molkentin

A critical event in ischemia-based cell death is the opening of the mitochondrial permeability transition pore (MPTP). However, the molecular identity of the components of the MPTP remains unknown. Here, we determined that the Bcl-2 family members Bax and Bak, which are central regulators of apoptotic cell death, are also required for mitochondrial pore-dependent necrotic cell death by facilitating outer membrane permeability of the MPTP. Loss of Bax/Bak reduced outer mitochondrial membrane permeability and conductance without altering inner membrane MPTP function, resulting in resistance to mitochondrial calcium overload and necrotic cell death. Reconstitution with mutants of Bax that cannot oligomerize and form apoptotic pores, but still enhance outer membrane permeability, permitted MPTP-dependent mitochondrial swelling and restored necrotic cell death. Our data predict that the MPTP is an inner membrane regulated process, although in the absence of Bax/Bak the outer membrane resists swelling and prevents organelle rupture to prevent cell death. DOI: http://dx.doi.org/10.7554/eLife.00772.001


Biochimica et Biophysica Acta | 2010

MAC and Bcl-2 family proteins conspire in a deadly plot

Laurent M. Dejean; Shin-Young Ryu; Sonia Martinez-Caballero; Oscar Teijido; Pablo M. Peixoto; Kathleen W. Kinnally

Apoptosis is an elemental form of programmed cell death; it is fundamental to higher eukaryotes and essential to mechanisms controlling tissue homeostasis. Apoptosis is also involved in many pathologies including cancer, neurodegenerative diseases, aging, and infarcts. This cell death program is tightly regulated by Bcl-2 family proteins by controlling the formation of the mitochondrial apoptosis-induced channel or MAC. Assembly of MAC corresponds to permeabilization of the mitochondrial outer membrane, which is the so called commitment step of apoptosis. MAC provides the pathway through the mitochondrial outer membrane for the release of cytochrome c and other pro-apoptotic factors from the intermembrane space. While overexpression of anti-apoptotic Bcl-2 eliminates MAC activity, oligomers of the pro-apoptotic members Bax and/or Bak are essential structural component(s) of MAC. Assembly of MAC from Bax or Bak was monitored in real time by directly patch-clamping mitochondria with micropipettes containing the sentinel tBid, a direct activator of Bax and Bak. Herein, a variety of high affinity inhibitors of MAC (iMAC) that may prove to be crucial tools in mechanistic studies have recently been identified. This review focuses on characterization of MAC activity, its regulation by Bcl-2 family proteins, and a discussion of how MAC can be pharmacologically turned on or off depending on the pathology to be treated.


Biofactors | 2010

Role of mitochondrial ion channels in cell death

Shin-Young Ryu; Pablo M. Peixoto; Oscar Teijido; Laurent M. Dejean; Kathleen W. Kinnally

Ion channels located in the outer and inner mitochondrial membranes are key regulators of cellular signaling for life and death. Permeabilization of mitochondrial membranes is one of the most critical steps in the progression of several cell death pathways. The mitochondrial apoptosis‐induced channel (MAC) and the mitochondrial permeability transition pore (mPTP) play major roles in these processes. Here, the most recent progress and current perspectives about the roles of MAC and mPTP in mitochondrial membrane permeabilization during cell death are presented. The crosstalk signaling of MAC and mPTP formation/activation mediated by cytosolic Ca2+ signaling, Bcl‐2 family proteins, and other mitochondrial ion channels is also discussed. Understanding the mechanisms that regulate opening and closing of MAC and mPTP has revealed new therapeutic targets that potentially could control cell death in pathologies such as cancer, ischemia/reperfusion injuries, and neurodegenerative diseases.


FEBS Letters | 2010

Mitochondrial ion channels as therapeutic targets.

Pablo M. Peixoto; Shin-Young Ryu; Kathleen W. Kinnally

The study of mitochondrial ion channels changed our perception of these double‐wrapped organelles from being just the power house of a cell to the guardian of a cells fate. Mitochondria communicate with the cell through these special channels. Most of the time, the message is encoded by ion flow across the mitochondrial outer and inner membranes. Potassium, sodium, calcium, protons, nucleotides, and proteins traverse the mitochondrial membranes in an exquisitely regulated manner to control a myriad of processes, from respiration and mitochondrial morphology to cell proliferation and cell death. This review is an update on both well established and putative mitochondrial channels regarding their composition, function, regulation, and therapeutic potential.


Biochemical Journal | 2009

MAC inhibitors suppress mitochondrial apoptosis.

Pablo M. Peixoto; Shin Young Ryu; Agnes Bombrun; Bruno Antonsson; Kathleen W. Kinnally

MAC (mitochondrial apoptosis-induced channel) forms in the mitochondrial outer membrane and unleashes cytochrome c to orchestrate the execution of the cell. MAC opening is the commitment step of intrinsic apoptosis. Hence closure of MAC may prevent apoptosis. Compounds that blocked the release of fluorescein from liposomes by recombinant Bax were tested for their ability to directly close MAC and suppress apoptosis in FL5.12 cells. Low doses of these compounds (IC50 values ranged from 19 to 966 nM) irreversibly closed MAC. These compounds also blocked cytochrome c release and halted the onset of apoptotic markers normally induced by IL-3 (interleukin-3) deprivation or staurosporine. Our results reveal the tight link among MAC activity, cytochrome c release and apoptotic death, and indicate this mitochondrial channel is a promising therapeutic target.


Biochemical and Biophysical Research Communications | 2009

Mitochondrial apoptosis is amplified through gap junctions.

Pablo M. Peixoto; Shin Young Ryu; Dawn Pietkiewicz Pruzansky; Maria Kuriakose; Andrew P. Gilmore; Kathleen W. Kinnally

The death of one cell can precipitate the death of nearby cells in a process referred to as the bystander effect. We investigated whether mitochondrial apoptosis generated a bystander effect and, if so, by which pathway. Microinjection with cytochrome c mimicked function of the mitochondrial apoptosis-induced channel MAC and caused apoptosis of both target and nearby osteoblasts. This effect was suppressed by inhibiting gap junction intercellular communication. A bystander effect was also observed after exogenous expression of tBid, which facilitates MAC formation and cytochrome c release. Interestingly, in connexin-43 deficient osteoblasts, microinjection of cytochrome c induced apoptosis only in the target cell. These findings indicate that a death signal was generated downstream of MAC function and was transmitted through gap junctions to amplify apoptosis in neighboring cells. This concept may have implications in development of new therapeutic approaches.


Cell Calcium | 2010

Extracellular ATP and P2Y2 receptors mediate intercellular Ca2+ waves induced by mechanical stimulation in submandibular gland cells: role of mitochondrial regulation of store operated Ca2+ entry

Shin-Young Ryu; Pablo M. Peixoto; Jong Hak Won; David I. Yule; Kathleen W. Kinnally

Coordination of Ca(2+) signaling among cells contributes to synchronization of salivary gland cell function. However, mechanisms that underlie this signaling remain elusive. Here, intercellular Ca(2+) waves (ICW) in submandibular gland cells were investigated using Fura-2 fluorescence imaging. Mechanical stimulation of single cells induced ICW propagation from the stimulated cells through approximately 7 layers of cells or approximately 120microm. Our findings indicate that an extracellular ATP-dependent pathway is involved because the purinergic receptor antagonist suramin and the ATP hydrolyzing enzyme apyrase blocked ICW propagation. However, the gap junction uncoupler oleamide had no effect. ATP is released from mechanically stimulated cells possibly through opening of mechanosensitive maxi-anion channels, and does not appear to be directly linked to cytosolic Ca(2+). The ICW is propagated by diffusing ATP, which activates purinergic receptors in neighboring cells. This purinergic signaling induces a Ca(2+) transient that is dependent on Ca(2+) release via IP(3) receptors in the ER and store operated Ca(2+) entry (SOCE). Finally, inhibition of mitochondrial Ca(2+) uptake modified ICW indicating an important role of these organelles in this phenomenon. These studies increase our understanding of purinergic receptor signaling in salivary gland cells, and its role as a coordination mechanism of Ca(2+) signals induced by mechanical stimulation.


Mitochondrion | 2012

The therapeutic potential of mitochondrial channels in cancer, ischemia-reperfusion injury, and neurodegeneration.

Pablo M. Peixoto; Laurent M. Dejean; Kathleen W. Kinnally

Mitochondria communicate with the rest of the cell through channels located in their inner and outer membranes. Most of the time, the message is encoded by the flow of anions and cations e.g., through VDAC and PTP, respectively. However, proteins are also both imported and exported across the mitochondrial membranes e.g., through TOM and MAC, respectively. Transport through mitochondrial channels is exquisitely regulated and controls a myriad of processes; from energy production to cell death. Here, we examine the role of some of the mitochondrial channels involved in neurodegeneration, ischemia-reperfusion injury and cancer in the context of their potential as therapeutic targets.


American Journal of Pathology | 2011

Mitochondrial Apoptosis-Induced Channel (MAC) Function Triggers a Bax/Bak-Dependent Bystander Effect

Pablo M. Peixoto; Jennifer K. Lue; Shin-Young Ryu; Brian N. Wroble; Jill C. Sible; Kathleen W. Kinnally

Collateral spread of apoptosis to nearby cells is referred to as the bystander effect, a process that is integral to tissue homeostasis and a challenge to anticancer therapies. In many systems, apoptosis relies on permeabilization of the mitochondrial outer membrane to factors such as cytochrome c and Smac/DIABLO. This permeabilization occurs via formation of a mitochondrial apoptosis-induced channel (MAC) and was mimicked here by single-cell microinjection of cytochrome c into Xenopus laevis embryos. Waves of apoptosis were observed in vivo from the injected to the neighboring cells. This finding indicates that a death signal generated downstream of cytochrome c release diffused to neighboring cells and ultimately killed the animals. The role of MAC in bystander effects was then assessed in mouse embryonic fibroblasts that did or did not express its main components, Bax and/or Bak. Exogenous expression of green fluorescent protein-Bax triggered permeabilization of the outer membrane and apoptosis in these cells. Time-lapse videos showed that neighboring cells also underwent apoptosis, but expression of Bax and/or Bak was essential to this effect, because no bystanders were observed in cells lacking both of these MAC components. These results may guide development of novel therapeutic strategies to selectively eliminate tumors or minimize the size of tissue injury in degenerative or traumatic cell death.

Collaboration


Dive into the Pablo M. Peixoto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen Madamba

City University of New York

View shared research outputs
Top Co-Authors

Avatar

Oygul Mirzalieva

City University of New York

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge