Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pablo P. Boix is active.

Publication


Featured researches published by Pablo P. Boix.


Nano Letters | 2013

High Efficiency Solid-State Sensitized Solar Cell-Based on Submicrometer Rutile TiO2 Nanorod and CH3NH3PbI3 Perovskite Sensitizer

Hui-Seon Kim; Jin-Wook Lee; Natalia Yantara; Pablo P. Boix; Sneha A. Kulkarni; Subodh G. Mhaisalkar; Michael Grätzel; Nam-Gyu Park

We report a highly efficient solar cell based on a submicrometer (~0.6 μm) rutile TiO2 nanorod sensitized with CH3NH3PbI3 perovskite nanodots. Rutile nanorods were grown hydrothermally and their lengths were varied through the control of the reaction time. Infiltration of spiro-MeOTAD hole transport material into the perovskite-sensitized nanorod films demonstrated photocurrent density of 15.6 mA/cm(2), voltage of 955 mV, and fill factor of 0.63, leading to a power conversion efficiency (PCE) of 9.4% under the simulated AM 1.5G one sun illumination. Photovoltaic performance was significantly dependent on the length of the nanorods, where both photocurrent and voltage decreased with increasing nanorod lengths. A continuous drop of voltage with increasing nanorod length correlated with charge generation efficiency rather than recombination kinetics with impedance spectroscopic characterization displaying similar recombination regardless of the nanorod length.


Chemical Communications | 2013

Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells

Mulmudi Hemant Kumar; Natalia Yantara; Sabba Dharani; Michael Graetzel; Subodh G. Mhaisalkar; Pablo P. Boix; Nripan Mathews

A ZnO compact layer formed by electrodeposition and ZnO nanorods grown by chemical bath deposition (CBD) allow the processing of low-temperature, solution based and flexible solid state perovskite CH3NH3PbI3 solar cells. Conversion efficiencies of 8.90% were achieved on rigid substrates while the flexible ones yielded 2.62%.


Advanced Materials | 2016

Perovskite Materials for Light-Emitting Diodes and Lasers

Sjoerd A. Veldhuis; Pablo P. Boix; Natalia Yantara; Mingjie Li; Tze Chien Sum; Nripan Mathews; Subodh G. Mhaisalkar

Organic-inorganic hybrid perovskites have cemented their position as an exceptional class of optoelectronic materials thanks to record photovoltaic efficiencies of 22.1%, as well as promising demonstrations of light-emitting diodes, lasers, and light-emitting transistors. Perovskite materials with photoluminescence quantum yields close to 100% and perovskite light-emitting diodes with external quantum efficiencies of 8% and current efficiencies of 43 cd A(-1) have been achieved. Although perovskite light-emitting devices are yet to become industrially relevant, in merely two years these devices have achieved the brightness and efficiencies that organic light-emitting diodes accomplished in two decades. Further advances will rely decisively on the multitude of compositional, structural variants that enable the formation of lower-dimensionality layered and three-dimensional perovskites, nanostructures, charge-transport materials, and device processing with architectural innovations. Here, the rapid advancements in perovskite light-emitting devices and lasers are reviewed. The key challenges in materials development, device fabrication, operational stability are addressed, and an outlook is presented that will address market viability of perovskite light-emitting devices.


Advanced Materials | 2014

Lead-Free Halide Perovskite Solar Cells with High Photocurrents Realized Through Vacancy Modulation

Mulmudi Hemant Kumar; Sabba Dharani; Wei Lin Leong; Pablo P. Boix; Rajiv Ramanujam Prabhakar; Tom Baikie; Chen Shi; Hong Ding; R. Ramesh; Mark Asta; Michael Graetzel; Subodh G. Mhaisalkar; Nripan Mathews

Lead free perovskite solar cells based on a CsSnI3 light absorber with a spectral response from 950 nm is demonstrated. The high photocurrents noted in the system are a consequence of SnF2 addition which reduces defect concentrations and hence the background charge carrier density.


ACS Nano | 2014

Laminated Carbon Nanotube Networks for Metal Electrode-Free Efficient Perovskite Solar Cells

Zhen Li; Sneha A. Kulkarni; Pablo P. Boix; Enzheng Shi; Anyuan Cao; Kunwu Fu; Sudip K. Batabyal; Jun Zhang; Qihua Xiong; Lydia Helena Wong; Nripan Mathews; Subodh G. Mhaisalkar

Organic-inorganic metal halide perovskite solar cells were fabricated by laminating films of a carbon nanotube (CNT) network onto a CH3NH3PbI3 substrate as a hole collector, bypassing the energy-consuming vacuum process of metal deposition. In the absence of an organic hole-transporting material and metal contact, CH3NH3PbI3 and CNTs formed a solar cell with an efficiency of up to 6.87%. The CH3NH3PbI3/CNTs solar cells were semitransparent and showed photovoltaic output with dual side illuminations due to the transparency of the CNT electrode. Adding spiro-OMeTAD to the CNT network forms a composite electrode that improved the efficiency to 9.90% due to the enhanced hole extraction and reduced recombination in solar cells. The interfacial charge transfer and transport in solar cells were investigated through photoluminescence and impedance measurements. The flexible and transparent CNT network film shows great potential for realizing flexible and semitransparent perovskite solar cells.


Journal of Materials Chemistry | 2014

Band-gap tuning of lead halide perovskites using a sequential deposition process

Sneha A. Kulkarni; Tom Baikie; Pablo P. Boix; Natalia Yantara; Nripan Mathews; Subodh G. Mhaisalkar

Band-gap tuning of mixed anion lead halide perovskites (MAPb(I1−xBrx)2 (0 ≤ x ≤ 1)) has been demonstrated by means of a sequential deposition process. The optical properties of perovskite hybrids can be flexibly modified by changing (mixing) the concentration of halogen precursors. The concentrations of precursor solution as well as the conversion time play an important role in determining the band-gap of perovskites. A systematic shift of the absorption band edge to shorter wavelengths is observed with increasing Br content in the perovskite films, which results in the decrement of the photocurrent. Nanorod like morphological features are also observed for perovskite films with an iodide to bromide molar ratio of <0.7.


Journal of Physical Chemistry Letters | 2015

Inorganic Halide Perovskites for Efficient Light-Emitting Diodes

Natalia Yantara; Saikat Bhaumik; Fei Yan; Dharani Sabba; Herlina Arianita Dewi; Nripan Mathews; Pablo P. Boix; Hilmi Volkan Demir; Subodh G. Mhaisalkar

Lead-halide perovskites have transcended photovoltaics. Perovskite light-emitting diodes (PeLEDs) emerge as a new field to leverage on these fascinating semiconductors. Here, we report the first use of completely inorganic CsPbBr3 thin films for enhanced light emission through controlled modulation of the trap density by varying the CsBr-PbBr2 precursor concentration. Although pure CsPbBr3 films can be deposited from equimolar CsBr-PbBr2 and CsBr-rich solutions, strikingly narrow emission line (17 nm), accompanied by elongated radiative lifetimes (3.9 ns) and increased photoluminescence quantum yield (16%), was achieved with the latter. This is translated into the enhanced performance of the resulting PeLED devices, with lower turn-on voltage (3 V), narrow electroluminescence spectra (18 nm) and higher electroluminescence intensity (407 Cd/m(2)) achieved from the CsBr-rich solutions.


Journal of Physical Chemistry Letters | 2015

Perovskite Solar Cells: Beyond Methylammonium Lead Iodide

Pablo P. Boix; Shweta Agarwala; Teck Ming Koh; Nripan Mathews; Subodh G. Mhaisalkar

Organic-inorganic lead halide based perovskites solar cells are by far the highest efficiency solution-processed solar cells, threatening to challenge thin film and polycrystalline silicon ones. Despite the intense research in this area, concerns surrounding the long-term stability as well as the toxicity of lead in the archetypal perovskite, CH3NH3PbI3, have the potential to derail commercialization. Although the search for Pb-free perovskites have naturally shifted to other transition metal cations and formulations that replace the organic moiety, efficiencies with these substitutions are still substantially lower than those of the Pb-perovskite. The perovskite family offers rich multitudes of crystal structures and substituents with the potential to uncover new and exciting photophysical phenomena that hold the promise of higher solar cell efficiencies. In addressing materials beyond CH3NH3PbI3, this Perspective will discuss a broad palette of elemental substitutions, solid solutions, and multidimensional families that will provide the next fillip toward market viability of the perovskite solar cells.


Chemical Science | 2014

Novel hole transporting materials based on triptycene core for high efficiency mesoscopic perovskite solar cells

Anurag Krishna; Dharani Sabba; Hairong Li; Jun Yin; Pablo P. Boix; Cesare Soci; Subodh G. Mhaisalkar; Andrew C. Grimsdale

Three novel hole-conducting molecules (T101, T102 and T103) based on a triptycene core have been synthesized using short routes with high yields. The optical and electrochemical properties were tuned by modifying the functional groups, through linking the triptycene to diphenylamines via phenyl and/or thienyl groups. The mesoporous perovskite solar cells fabricated using T102 and T103 as the hole transporting material (HTM) showed a power conversion efficiency (PCE) of 12.24% and 12.38%, respectively, which is comparable to that obtained using the best performing HTM spiro-OMeTAD. The T102 based device showed higher fill factor (69.1%) and Voc (1.03 V) than the spiro-OMeTAD based device (FF = 63.4%, Voc = 0.976 V) whereas the T103 based device showed comparable Jsc (20.3 mA cm−2) and higher Voc (0.985 V) than the spiro-OMeTAD (Jsc = 20.8 mA cm−2) based cell.


ACS Nano | 2012

From Flat to Nanostructured Photovoltaics: Balance between Thickness of the Absorber and Charge Screening in Sensitized Solar Cells

Pablo P. Boix; Yong Hui Lee; Francisco Fabregat-Santiago; Sang Hyuk Im; Iván Mora-Seró; Juan Bisquert; Sang Il Seok

Nanoporous metal oxide electrodes provide a high internal area for dye anchoring in dye-sensitized solar cells, but the thickness required to extinguish the solar photons also enhances recombination at the TiO(2)/electrolyte interface. The high extinction coefficient of inorganic semiconductor absorber should allow the reduction of the film thickness, improving the photovoltage. Here we study all-solid semiconductor sensitized solar cells, in the promising TiO(2)/Sb(2)S(3)/P3HT configuration. Flat and nanostructured cells have been prepared and analyzed, developing a cell performance model, based on impedance spectroscopy results, that allows us to determine the impact of the reduction of metal oxide film thickness on the operation of the solar cell. Decreasing the effective surface area toward the limit of flat samples produces a reduction in the recombination rate, increasing the open circuit potential, V(oc), while providing a significant photocurrent. However, charge compensation problems as a consequence of inefficient charge screening in flat cells increase the hole transport resistance, lowering severely the cell fill factor. The use of novel structures balancing recombination and hole transport will enhance solid sensitized cell performance.

Collaboration


Dive into the Pablo P. Boix's collaboration.

Top Co-Authors

Avatar

Subodh G. Mhaisalkar

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Nripan Mathews

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Lydia Helena Wong

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Natalia Yantara

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Grätzel

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Kunwu Fu

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Teck Ming Koh

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Cesare Soci

Nanyang Technological University

View shared research outputs
Researchain Logo
Decentralizing Knowledge