Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pablo Varona is active.

Publication


Featured researches published by Pablo Varona.


PLOS Computational Biology | 2008

Transient Cognitive Dynamics, Metastability, and Decision Making

Mikhail I. Rabinovich; Ramón Huerta; Pablo Varona; Valentin S. Afraimovich

The idea that cognitive activity can be understood using nonlinear dynamics has been intensively discussed at length for the last 15 years. One of the popular points of view is that metastable states play a key role in the execution of cognitive functions. Experimental and modeling studies suggest that most of these functions are the result of transient activity of large-scale brain networks in the presence of noise. Such transients may consist of a sequential switching between different metastable cognitive states. The main problem faced when using dynamical theory to describe transient cognitive processes is the fundamental contradiction between reproducibility and flexibility of transient behavior. In this paper, we propose a theoretical description of transient cognitive dynamics based on the interaction of functionally dependent metastable cognitive states. The mathematical image of such transient activity is a stable heteroclinic channel, i.e., a set of trajectories in the vicinity of a heteroclinic skeleton that consists of saddles and unstable separatrices that connect their surroundings. We suggest a basic mathematical model, a strongly dissipative dynamical system, and formulate the conditions for the robustness and reproducibility of cognitive transients that satisfy the competing requirements for stability and flexibility. Based on this approach, we describe here an effective solution for the problem of sequential decision making, represented as a fixed time game: a player takes sequential actions in a changing noisy environment so as to maximize a cumulative reward. As we predict and verify in computer simulations, noise plays an important role in optimizing the gain.


Physical Review E | 2000

Synchronous behavior of two coupled electronic neurons

Reynaldo D. Pinto; Pablo Varona; Alexander R. Volkovskii; Attila Szücs; Henry D. I. Abarbanel; Michail I. Rabinovich

We report on experimental studies of synchronization phenomena in a pair of analog electronic neurons (ENs). The ENs were designed to reproduce the observed membrane voltage oscillations of isolated biological neurons from the stomatogastric ganglion of the California spiny lobster Panulirus interruptus. The ENs are simple analog circuits which integrate four-dimensional differential equations representing fast and slow subcellular mechanisms that produce the characteristic regular/chaotic spiking-bursting behavior of these cells. In this paper we study their dynamical behavior as we couple them in the same configurations as we have done for their counterpart biological neurons. The interconnections we use for these neural oscillators are both direct electrical connections and excitatory and inhibitory chemical connections: each realized by analog circuitry and suggested by biological examples. We provide here quantitative evidence that the ENs and the biological neurons behave similarly when coupled in the same manner. They each display well defined bifurcations in their mutual synchronization and regularization. We report briefly on an experiment on coupled biological neurons and four-dimensional ENs, which provides further ground for testing the validity of our numerical and electronic models of individual neural behavior. Our experiments as a whole present interesting new examples of regularization and synchronization in coupled nonlinear oscillators.


International Journal of Bifurcation and Chaos | 2004

HETEROCLINIC CONTOURS IN NEURAL ENSEMBLES AND THE WINNERLESS COMPETITION PRINCIPLE

Valentin S. Afraimovich; Mikhail I. Rabinovich; Pablo Varona

The ability of nonlinear dynamical systems to process incoming information is a key problem of many fundamental and applied sciences. Information processing by computation with attractors (steady states, limit cycles and strange attractors) has been a subject of many publications. In this paper, we discuss a new direction in information dynamics based on neurophysiological experiments that can be applied for the explanation and prediction of many phenomena in living biological systems and for the design of new paradigms in neural computation. This new concept is the Winnerless Competition (WLC) principle. The main point of this principle is the transformation of the incoming identity or spatial inputs into identity-temporal output based on the intrinsic switching dynamics of the neural system. In the presence of stimuli the sequence of the switching, whose geometrical image in the phase space is a heteroclinic contour, uniquely depends on the incoming information. The key problem in the realization of the WLC principle is the robustness against noise and, simultaneously, the sensitivity of the switching to the incoming input. In this paper we prove two theorems about the stability of the sequential switching and give several examples of WLC networks that illustrate the coexistence of sensitivity and robustness.


Physics of Life Reviews | 2012

Information flow dynamics in the brain.

Mikhail I. Rabinovich; Valentin S. Afraimovich; Christian Bick; Pablo Varona

Timing and dynamics of information in the brain is a hot field in modern neuroscience. The analysis of the temporal evolution of brain information is crucially important for the understanding of higher cognitive mechanisms in normal and pathological states. From the perspective of information dynamics, in this review we discuss working memory capacity, language dynamics, goal-dependent behavior programming and other functions of brain activity. In contrast with the classical description of information theory, which is mostly algebraic, brain flow information dynamics deals with problems such as the stability/instability of information flows, their quality, the timing of sequential processing, the top-down cognitive control of perceptual information, and information creation. In this framework, different types of information flow instabilities correspond to different cognitive disorders. On the other hand, the robustness of cognitive activity is related to the control of the information flow stability. We discuss these problems using both experimental and theoretical approaches, and we argue that brain activity is better understood considering information flows in the phase space of the corresponding dynamical model. In particular, we show how theory helps to understand intriguing experimental results in this matter, and how recent knowledge inspires new theoretical formalisms that can be tested with modern experimental techniques.


Neuroreport | 2000

Interacting biological and electronic neurons generate realistic oscillatory rhythms.

Attila Szücs; Pablo Varona; Alexander R. Volkovskii; Henry D. I. Abarbanel; Mikhail I. Rabinovich; Allen I. Selverston

Small assemblies of neurons such as central pattern generators (CPG) are known to express regular oscillatory firing patterns comprising bursts of action potentials. In contrast, individual CPG neurons isolated from the remainder of the network can generate irregular firing patterns. In our study of cooperative behavior in CPGs we developed an analog electronic neuron (EN) that reproduces firing patterns observed in lobster pyloric CPG neurons. Using a tuneable artificial synapse we connected the EN bidirectionally to neurons of this CPG. We found that the periodic bursting oscillation of this mixed assembly depends on the strength and sign of the electrical coupling. Working with identified, isolated pyloric CPG neurons whose network rhythms were impaired, the EN/biological network restored the characteristic CPG rhythm both when the EN oscillations are regular and when they are irregular.


Frontiers in Computational Neuroscience | 2011

Robust Transient Dynamics and Brain Functions

Mikhail I. Rabinovich; Pablo Varona

In the last few decades several concepts of dynamical systems theory (DST) have guided psychologists, cognitive scientists, and neuroscientists to rethink about sensory motor behavior and embodied cognition. A critical step in the progress of DST application to the brain (supported by modern methods of brain imaging and multi-electrode recording techniques) has been the transfer of its initial success in motor behavior to mental function, i.e., perception, emotion, and cognition. Open questions from research in genetics, ecology, brain sciences, etc., have changed DST itself and lead to the discovery of a new dynamical phenomenon, i.e., reproducible and robust transients that are at the same time sensitive to informational signals. The goal of this review is to describe a new mathematical framework – heteroclinic sequential dynamics – to understand self-organized activity in the brain that can explain certain aspects of robust itinerant behavior. Specifically, we discuss a hierarchy of coarse-grain models of mental dynamics in the form of kinetic equations of modes. These modes compete for resources at three levels: (i) within the same modality, (ii) among different modalities from the same family (like perception), and (iii) among modalities from different families (like emotion and cognition). The analysis of the conditions for robustness, i.e., the structural stability of transient (sequential) dynamics, give us the possibility to explain phenomena like the finite capacity of our sequential working memory – a vital cognitive function –, and to find specific dynamical signatures – different kinds of instabilities – of several brain functions and mental diseases.


Journal of Physiology-paris | 2000

Reliable circuits from irregular neurons: A dynamical approach to understanding central pattern generators

Allen I. Selverston; Mikhail I. Rabinovich; Henry D. I. Abarbanel; Robert C. Elson; Attila Szücs; Reynaldo D. Pinto; Ramón Huerta; Pablo Varona

Central pattern generating neurons from the lobster stomatogastric ganglion were analyzed using new nonlinear methods. The LP neuron was found to have only four or five degrees of freedom in the isolated condition and displayed chaotic behavior. We show that this chaotic behavior could be regularized by periodic pulses of negative current injected into the neuron or by coupling it to another neuron via inhibitory connections. We used both a modified Hindmarsh-Rose model to simulate the neurons behavior phenomenologically and a more realistic conductance-based model so that the modeling could be linked to the experimental observations. Both models were able to capture the dynamics of the neuron behavior better than previous models. We used the Hindmarsh-Rose model as the basis for building electronic neurons which could then be integrated into the biological circuitry. Such neurons were able to rescue patterns which had been disabled by removing key biological neurons from the circuit.


Chaos | 2002

Winnerless competition between sensory neurons generates chaos: A possible mechanism for molluscan hunting behavior.

Pablo Varona; Mikhail I. Rabinovich; Allen I. Selverston; Yuri I. Arshavsky

In the presence of prey, the marine mollusk Clione limacina exhibits search behavior, i.e., circular motions whose plane and radius change in a chaotic-like manner. We have formulated a dynamical model of the chaotic hunting behavior of Clione based on physiological in vivo and in vitro experiments. The model includes a description of the action of the cerebral hunting interneuron on the receptor neurons of the gravity sensory organ, the statocyst. A network of six receptor model neurons with Lotka-Volterra-type dynamics and nonsymmetric inhibitory interactions has no simple static attractors that correspond to winner take all phenomena. Instead, the winnerless competition induced by the hunting neuron displays hyperchaos with two positive Lyapunov exponents. The origin of the chaos is related to the interaction of two clusters of receptor neurons that are described with two heteroclinic loops in phase space. We hypothesize that the chaotic activity of the receptor neurons can drive the complex behavior of Clione observed during hunting. (c) 2002 American Institute of Physics.


Neural Networks | 2001

Regularization mechanisms of spiking-bursting neurons.

Pablo Varona; Joaquín J. Torres; Ramón Huerta; Henry D. I. Abarbanel; Mikhail I. Rabinovich

An essential question raised after the observation of highly variable bursting activity in individual neurons of Central Pattern Generators (CPGs) is how an assembly of such cells can cooperatively act to produce regular signals to motor systems. It is well known that some neurons in the lobster stomatogastric ganglion have a highly irregular spiking-bursting behavior when they are synaptically isolated from any connection in the CPG. Experimental recordings show that periodic stimuli on a single neuron can regulate its firing activity. Other evidence demonstrates that specific chemical and/or electrical synapses among neurons also induce the regularization of the rhythms. In this paper we present a modeling study in which a slow subcellular dynamics, the exchange of calcium between an intracellular store and the cytoplasm, is responsible for the origin and control of the irregular spiking-bursting activity. We show this in simulations of single cells under periodic driving and in minimal networks where the cooperative activity can induce regularization. While often neglected in the description of realistic neuron models, subcellular processes with slow dynamics may play an important role in information processing and short-term memory of spiking-bursting neurons.


Biological Cybernetics | 2001

Dynamics of two electrically coupled chaotic neurons: Experimental observations and model analysis

Pablo Varona; Joaquín J. Torres; Henry D. I. Abarbanel; Mikhail I. Rabinovich; Robert C. Elson

Abstract. Conductance-based models of neurons from the lobster stomatogastric ganglion (STG) have been developed to understand the observed chaotic behavior of individual STG neurons. These models identify an additional slow dynamical process – calcium exchange and storage in the endoplasmic reticulum – as a biologically plausible source for the observed chaos in the oscillations of these cells. In this paper we test these ideas further by exploring the dynamical behavior when two model neurons are coupled by electrical or gap junction connections. We compare in detail the model results to the laboratory measurements of electrically-coupled neurons that we reported earlier. The experiments on the biological neurons varied the strength of the effective coupling by applying a parallel, artificial synapse, which changed both the magnitude and polarity of the conductance between the neurons. We observed a sequence of bifurcations that took the neurons from strongly synchronized in-phase behavior, through uncorrelated chaotic oscillations to strongly synchronized – and now regular – out-of-phase behavior. The model calculations reproduce these observations quantitatively, indicating that slow subcellular processes could account for the mechanisms involved in the synchronization and regularization of the otherwise individual chaotic activities.

Collaboration


Dive into the Pablo Varona's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roberto Latorre

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rafael Levi

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ramón Huerta

University of California

View shared research outputs
Top Co-Authors

Avatar

Valentin S. Afraimovich

Universidad Autónoma de San Luis Potosí

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge