Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paige M. Fox is active.

Publication


Featured researches published by Paige M. Fox.


Antimicrobial Agents and Chemotherapy | 2008

Spontaneous Deletion of the Methicillin Resistance Determinant, mecA, Partially Compensates for the Fitness Cost Associated with High-Level Vancomycin Resistance in Staphylococcus aureus

Michael J. Noto; Paige M. Fox; Gordon L. Archer

ABSTRACT Treatment of infections caused by Staphylococcus aureus is often confounded by the bacteriums ability to develop resistance to chemotherapeutic agents. Methicillin-resistant S. aureus (MRSA) arises through the acquisition of staphylococcal chromosomal cassette mec (SCCmec), a genomic island containing the methicillin resistance determinant, mecA. In contrast, resistance to vancomycin can result from exposure to the drug, a mechanism that is not dependent upon a gene acquisition event. Here we describe three MRSA strains that became resistant to vancomycin during passage in the presence of increasing concentrations of the drug. In each case two derivative strains were isolated, one that had lost mecA and one that retained mecA during passage. Strain 5836VR lost mecA by the site-specific chromosomal excision of SCCmec, while the other two strains (strains 3130VR and VP32) deleted portions of their SCCmec elements in a manner that appeared to involve IS431. Conversion to vancomycin resistance caused a decrease in the growth rate that was partially compensated for by the deletion of mecA. In mixed-culture competition experiments, vancomycin-resistant strains that lacked mecA readily outcompeted their mecA-containing counterparts, suggesting that the loss of mecA during conversion to vancomycin resistance was advantageous to the organism.


Antimicrobial Agents and Chemotherapy | 2006

Successful Therapy of Experimental Endocarditis Caused by Vancomycin-Resistant Staphylococcus aureus with a Combination of Vancomycin and β-Lactam Antibiotics

Paige M. Fox; Russell J. Lampen; Katrina S. Stumpf; Gordon L. Archer; Michael W. Climo

ABSTRACT VRS1 is the first isolated strain of vancomycin-resistant Staphylococcus aureus (VRSA) found to carry the vanA gene complex previously described in Enterococcus. Under vancomycin pressure, VRS1 makes aberrant cell walls consisting of stem tetrapeptide and depsipeptide that lack the terminal d-Ala-d-Ala residues targeted by vancomycin. Previous data have suggested that this aberrant cell wall is not cross-linked by PBP2a, the enzyme responsible for cell wall transpeptidation in the presence of β-lactam antibiotics. We examined the efficacy of treating VRS1 with a combination of vancomycin and β-lactam antibiotics in vitro and in vivo. We found that the MIC of oxacillin for VRS1 decreased from >256 μg/ml to <1 μg/ml in the presence of vancomycin. Using the rabbit model of endocarditis, we treated VRS1-infected rabbits with nafcillin alone, vancomycin alone, or a combination of nafcillin and vancomycin. Treatment with nafcillin in combination with vancomycin cleared bloodstream infections within 24 h and sterilized 12/13 spleens (92%), as well as 8/13 kidneys (62%), following 3 days of treatment. Mean aortic valve vegetation counts were reduced 3.48 log10 CFU/g with the combination therapy (compared to untreated controls) and were significantly lower than with either vancomycin or nafcillin given alone. VRS1 was extremely virulent in this model, as no untreated rabbits survived the 3-day trial. Treatment of clinical infections due to VRSA with the combination of vancomycin and β-lactams may be an option, based on these results.


Antimicrobial Agents and Chemotherapy | 2007

Vancomycin-Intermediate Staphylococcus aureus Strains Have Impaired Acetate Catabolism: Implications for Polysaccharide Intercellular Adhesin Synthesis and Autolysis

Jennifer L. Nelson; Kelly C. Rice; Sean R. Slater; Paige M. Fox; Gordon L. Archer; Kenneth W. Bayles; Paul D. Fey; Barry N. Kreiswirth; Greg A. Somerville

ABSTRACT The most common mechanism by which Staphylococcus aureus gains resistance to vancomycin is by adapting its physiology and metabolism to permit growth in the presence of vancomycin. Several studies have examined the adaptive changes occurring during the transition to vancomycin-intermediate resistance, leading to a model of vancomycin resistance in which decreased cell wall turnover and autolysis result in increased cell wall thickness and resistance to vancomycin. In the present study, we identified metabolic changes common to vancomycin-intermediate S. aureus (VISA) strains by assessing the metabolic and growth characteristics of two VISA strains (vancomycin MICs of 8 μg/ml) and two isogenic derivative strains with vancomycin MICs of 32 μg/ml. Interestingly, we observed the parental strains had impaired catabolism of nonpreferred carbon sources (i.e., acetate), and this impairment became more pronounced as vancomycin resistance increased. To determine if acetate catabolism impairment is common to VISA strains, we assessed the ability of VISA and vancomycin-sensitive S. aureus (VSSA) clinical isolates to catabolize acetate. As expected, a significantly greater percentage of VISA strains (71%) had impaired acetate catabolism relative to VSSA (8%). This is an important observation because staphylococcal acetate catabolism is implicated in growth yield and antibiotic tolerance and in regulating cell death and polysaccharide intercellular adhesin synthesis.


Microsurgery | 2013

White light spectroscopy for free flap monitoring.

Paige M. Fox; Kamakshi Zeidler; Joseph Carey; Gordon K. Lee

White light spectroscopy non‐invasively measures hemoglobin saturation at the capillary level rendering an end‐organ measurement of perfusion. We hypothesized this technology could be used after microvascular surgery to allow for early detection of ischemia and thrombosis. The Spectros T‐Stat monitoring device, which utilizes white light spectroscopy, was compared with traditional flap monitoring techniques including pencil Doppler and clinical exam. Data were prospectively collected and analyzed. Results from 31 flaps revealed a normal capillary hemoglobin saturation of 40–75% with increase in saturation during the early postoperative period. One flap required return to the operating room 12 hours after microvascular anastomosis. The T‐stat system recorded an acute decrease in saturation from ∼50% to less than 30% 50 min prior to identification by clinical exam. Prompt treatment resulted in flap salvage. The Spectros T‐Stat monitor may be a useful adjunct for free flap monitoring providing continuous, accurate perfusion assessment postoperatively.


Plastic and Reconstructive Surgery | 2013

Human flexor tendon tissue engineering: in vivo effects of stem cell reseeding.

Taliah Schmitt; Paige M. Fox; Colin Woon; Simon Farnebo; Joel A. Bronstein; Anthony W. Behn; Hung Pham; James Chang

Background: Tissue-engineered human flexor tendons may be an option to aid in reconstruction of complex upper extremity injuries with significant tendon loss. The authors hypothesize that human adipose-derived stem cells remain viable following reseeding on human tendon scaffolds in vivo and aid in graft integration. Methods: Decellularized human flexor tendons harvested from fresh-frozen cadavers and reseeded with green fluorescent protein–labeled pooled human adipose-derived stem cells were examined with bioluminescent imaging and immunohistochemistry. Reseeded repaired tendons were compared biomechanically with unseeded controls following implantation in athymic rats at 2 and 4 weeks. The ratio of collagen I to collagen III at the repair site was examined using Sirius red staining. To confirm cell migration, reseeded and unseeded tendons were placed either in contact or with a 1-mm gap for 12 days. Green fluorescent protein signal was then detected. Results: Following reseeding, viable cells were visualized at 12 days in vitro and 4 weeks in vivo. Biomechanical testing revealed no significant difference in ultimate load to failure and 2-mm gap force. Histologic evaluation showed host cell invasion and proliferation of the repair sites. No increase in collagen III was noted in reseeded constructs. Cell migration was confirmed from reseeded constructs to unseeded tendon scaffolds with tendon contact. Conclusions: Human adipose-derived stem cells reseeded onto decellularized allograft scaffolds are viable over 4 weeks in vivo. The movement of host cells into the scaffold and movement of adipose-derived stem cells along and into the scaffold suggests biointegration of the allograft.


Antimicrobial Agents and Chemotherapy | 2007

Lack of Relationship between Purine Biosynthesis and Vancomycin Resistance in Staphylococcus aureus: a Cautionary Tale for Microarray Interpretation

Paige M. Fox; Michael W. Climo; Gordon L. Archer

ABSTRACT Previous microarray data (E. Mongodin, J. Finan, M. W. Climo, A. Rosato, S. Gill, and G. L. Archer, J. Bacteriol. 185:4638-4643, 2003) noted an association in two vancomycin-intermediate Staphylococcus aureus (VISA) strains between high-level, passage-induced vancomycin resistance, a marked increase in the transcription of purine biosynthetic genes, and mutation of the putative purine regulator purR. Initial studies to report on the possible association between vancomycin resistance and alterations in purine metabolism in one of these strains (VP-32) confirmed, by Western analysis, an increase in the translation of PurH and PurM, two purine pathway enzymes. In addition, PurR was identified, by knockout and complementation in a vancomycin-susceptible strain, as a repressor of the purine biosynthetic operon in S. aureus, and the PurR missense mutation was shown to inactivate the repressor. However, despite the apparent relationship between increased purine biosynthesis and increased vancomycin resistance in VP-32, neither the addition of exogenous purines to a defined growth medium nor the truncation or inactivation of purR improved the growth of vancomycin-susceptible S. aureus in the presence of vancomycin. Furthermore, the passage of additional vancomycin-susceptible and VISA strains to high-level vancomycin resistance occurred without changes in cellular purine metabolism or mutation of purR despite the development of thickened cell walls in passaged strains. Thus, we could confirm neither a role for altered purine metabolism in the development of vancomycin resistance nor its requirement for the maintenance of a thickened cell wall. The failure of biochemical and physiological studies to support the association between transcription and phenotype initially found in careful microarray studies emphasizes the importance of follow-up investigations to confirm microarray observations.


Annals of Plastic Surgery | 2014

Fascia-only anterolateral thigh flap for extremity reconstruction.

Paige M. Fox; Ryan Endress; Subhro K. Sen; James Chang

IntroductionThe ability to use the anterolateral thigh (ALT) flap as a vascularized fascial flap, without skin or muscle, was first documented by Koshima et al in 1989. The authors mention the possibility of using the fascia alone for dural reconstruction. Despite its description more than 20 years ago, little literature exists on the application of the ALT flap as a vascularized fascial flap. In our experience, the ALT flap can be used as a fascia-only flap for thin, pliable coverage in extremity reconstruction. MethodsAfter approval from the institutional review board, the medical records and photographs of patients who had undergone fascia-only ALT free flaps for extremity reconstruction were reviewed. Photographic images of patients were then matched to patients who had undergone either a muscle-only or a fasciocutaneous free flap reconstruction of an extremity. Photographs of the final reconstruction were then given to medical and nonmedical personnel for analysis, focusing on aesthetics including color and contour. ResultsReview of cases performed over a 2-year period demonstrated similar ease of harvest for fascia-only ALT flaps compared to standard fasciocutaneous ALT flaps. Fascia-only flaps were used for thin, pliable coverage in the upper and lower extremities. There was no need for secondary procedures for debulking or aesthetic flap revision. In contrast to muscle flaps, which require muscle atrophy over time to achieve their final appearance, there was a similar flap contour from approximately 1 month postoperatively throughout the duration of follow-up. When a large flap is required, the fascia-only ALT has the advantage of a single-line donor-site scar. Photograph comparison to muscle flaps with skin grafts and fasciocutaneous flaps demonstrated improved color, contour, and overall aesthetic appearance of the fascia-only ALT over muscle and fasciocutaneous flaps. ConclusionsThe fascia-only ALT flap provides reliable, thin, and pliable coverage with improved contour and color over muscle and fasciocutaneous flaps. The fascia-only ALT is another excellent option for reconstructive surgery of the extremities.


Journal of Hand Surgery (European Volume) | 2013

Decellularized Human Tendon–Bone Grafts for Composite Flexor Tendon Reconstruction: A Cadaveric Model of Initial Mechanical Properties

Paige M. Fox; Simon Farnebo; Derek P. Lindsey; Julia Chang; Taliah Schmitt; James Chang

PURPOSE After complex hand trauma, restoration of tendon strength is challenging. Tendon insertion tears typically heal as fibrous scars after surgical reconstruction and create a weak point at the tendon-bone interface. In addition, major tendon loss may overwhelm the amount of available autograft for reconstruction. An off-the-shelf product may help address these challenges. We hypothesized that decellularized human flexor digitorum profundus and distal phalanx tendon-bone composite grafts were a feasible option for flexor tendon reconstruction after complex hand trauma. By replacing the entire injured composite segment, the need for tendon repair within the tendon sheath, reconstruction of the tendon-bone interface, and use of limited autograft could be eliminated. METHODS Paired human cadaver forearms were dissected to obtain the flexor digitorum profundus tendon with an attached block of distal phalanx. Tendon-bone grafts were pair-matched and divided into 2 groups: decellularized grafts (n = 12) and untreated (control) grafts (n = 11). Grafts in the decellularized group were subjected to physiochemical decellularization. Pair-matched tendon-bone grafts (decellularized and untreated) were placed back into the flexor tendon sheath and secured distally using a tie-over button and proximally by weaving the graft into the flexor digitorum superficialis tendon in the distal forearm. The ultimate load, location of failure, and excursion were determined. RESULTS Decellularized tendon-bone composite grafts demonstrated no significant difference in ultimate failure load or stiffness compared with untreated grafts. Both groups eventually failed in varied locations along the repair. The most common site of failure in both groups was the tie-over button. The decellularized group failed at the tendon-bone insertion in 3 specimens (25%) compared with none in the untreated group. Both groups demonstrated an average tendon excursion of approximately 82 mm before failure. CONCLUSIONS Decellularization of human flexor tendon-distal phalanx tendon-bone constructs did not compromise initial strength despite chemical and mechanical decellularization in a cadaveric model. At the time of repair, decellularized flexor tendon-bone grafts can exceed the strength and excursion needed for hand therapy immediately after reconstruction. CLINICAL RELEVANCE These tendon-bone grafts may become an option for complex hand reconstruction at or near tendon-bone insertions and throughout the tendon sheath. Further work is required to assess the role of reseeding in an in vivo model.


Plastic and Reconstructive Surgery | 2014

Grafting the alar rim: application as anatomical graft.

Ronald P. Gruber; Paige M. Fox; Anne Warren Peled; Kyle A. Belek

Background: Alar rim contour and alar rim grafts have become essential components of rhinoplasty. Ideally, grafts of the nose should be anatomical in shape. So doing might make grafts of the alar rim more robust. The authors considered doing that by applying the graft as a continuous extension of the lateral crus. Methods: Twelve patients (two men and 10 women) constituted the study group (seven primary and five secondary cases). Of those, there were five concave rims, two concave rims with rim retraction, two boxy tips, and three cephalically oriented lateral crura. Surgical technique included the following: (1) an open approach was used; (2) a marginal incision that ignored the caudal margin of the lateral crus (the incision went straight posteriorly to a point 5 to 6 mm from the rim margin) was used; (3) a triangular graft was made to cover the exposed vestibular skin; (4) it was secured end to end to the caudal border of the lateral crus; and (5) the poster end was allowed to sit in a small subcutaneous pocket. Results: Follow-up was 11 to 19 months. All 12 patients exhibited good rims as judged by a blinded panel. Rim retraction was not fully corrected in one patient, but no further treatment was required. One patient did require a secondary small rim graft for residual rim concavity. Conclusions: The concept of grafting the alar rim is strongly supported by the authors’ results. The modifications the authors applied by designing the graft to be anatomical in shape has been a technical help. CLINICAL QUESTION/LEVEL OF EVIDENCE: Therapeutic, IV.


Journal of Plastic Reconstructive and Aesthetic Surgery | 2012

Tissue expander with acellular dermal matrix for breast reconstruction infected by an unusual pathogen: Candida parapsilosis

Paige M. Fox; Gordon K. Lee

Infections occur in approximately 2-5% percent of women undergoing breast reconstruction by tissue expansion depending on patient characteristics and timing of reconstruction. Bacteria, specifically Staphylococci, are the most common pathogens. Treatment varies depending on the surgeon and the aggressiveness of the infection. We report a case of unilateral tissue expander infection with Candida parapsilosis in an otherwise healthy female undergoing immediate tissue expander placement after bilateral nipple-sparing mastectomies. The patient was treated with a one-stage irrigation, debridement, and tissue expander exchange as well as a 21-day course of oral antifungal therapy. Her infection resolved and she was able to complete her implant-based reconstruction. C. parapsilosis is usually responsible for infections in critically ill patients found in association with central lines, peritoneal dialysis catheters and prosthetic heart valves. The affinity of C. parapsilosis for foreign material makes it a causative agent worth considering in difficult to treat tissue expander infections.

Collaboration


Dive into the Paige M. Fox's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gordon L. Archer

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge