Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paige S. Katz is active.

Publication


Featured researches published by Paige S. Katz.


Journal of Applied Physiology | 2012

Dynamic micro- and macrovascular remodeling in coronary circulation of obese Ossabaw pigs with metabolic syndrome

Aaron J. Trask; Paige S. Katz; Amy P. Kelly; Maarten L. Galantowicz; Mary J. Cismowski; T. Aaron West; Zachary P. Neeb; Zachary C. Berwick; Adam G. Goodwill; Mouhamad Alloosh; Johnathan D. Tune; Michael Sturek; Pamela A. Lucchesi

Previous studies from our laboratory showed that coronary arterioles from type 2 diabetic mice undergo inward hypertrophic remodeling and reduced stiffness. The aim of the current study was to determine if coronary resistance microvessels (CRMs) in Ossabaw swine with metabolic syndrome (MetS) undergo remodeling distinct from coronary conduit arteries. Male Ossabaw swine were fed normal (n = 7, Lean) or hypercaloric high-fat (n = 7, MetS) diets for 6 mo, and then CRMs were isolated and mounted on a pressure myograph. CRMs isolated from MetS swine exhibited decreased luminal diameters (126 ± 5 and 105 ± 9 μm in Lean and MetS, respectively, P < 0.05) with thicker walls (18 ± 3 and 31 ± 3 μm in Lean and MetS, respectively, P < 0.05), which doubled the wall-to-lumen ratio (14 ± 2 and 30 ± 2 in Lean and MetS, respectively, P < 0.01). Incremental modulus of elasticity (IME) and beta stiffness index (BSI) were reduced in CRMs isolated from MetS pigs (IME: 3.6 × 10(6) ± 0.7 × 10(6) and 1.1 × 10(6) ± 0.2 × 10(6) dyn/cm(2) in Lean and MetS, respectively, P < 0.001; BSI: 10.3 ± 0.4 and 7.3 ± 1.8 in Lean and MetS, respectively, P < 0.001). BSI in the left anterior descending coronary artery was augmented in pigs with MetS. Structural changes were associated with capillary rarefaction, decreased hyperemic-to-basal coronary flow velocity ratio, and augmented myogenic tone. MetS CRMs showed a reduced collagen-to-elastin ratio, while immunostaining for the receptor for advanced glycation end products was selectively increased in the left anterior descending coronary artery. These data suggest that MetS causes hypertrophic inward remodeling of CRMs and capillary rarefaction, which contribute to decreased coronary flow and myocardial ischemia. Moreover, our data demonstrate novel differential remodeling between coronary micro- and macrovessels in a clinically relevant model of MetS.


PLOS ONE | 2011

Mesenteric resistance arteries in type 2 diabetic db/db mice undergo outward remodeling.

Flavia M. Souza-Smith; Paige S. Katz; Aaron J. Trask; James A. Stewart; Kevin Lord; Kurt J. Varner; Dalton Valentim Vassallo; Pamela A. Lucchesi

Objective Resistance vessel remodeling is controlled by myriad of hemodynamic and neurohormonal factors. This study characterized structural and molecular remodeling in mesenteric resistance arteries (MRAs) in diabetic (db/db) and control (Db/db) mice. Methods Structural properties were assessed in isolated MRAs from 12 and 16 wk-old db/db and Db/db mice by pressure myography. Matrix regulatory proteins were measured by Western blot analysis. Mean arterial pressure and superior mesenteric blood flow were measured in 12 wk-old mice by telemetry and a Doppler flow nanoprobe, respectively. Results Blood pressure was similar between groups. Lumen diameter and medial cross-sectional area were significantly increased in 16 wk-old db/db MRA compared to control, indicating outward hypertrophic remodeling. Moreover, wall stress and cross-sectional compliance were significantly larger in diabetic arteries. These remodeling indices were associated with increased expression of matrix regulatory proteins matrix metalloproteinase (MMP)-9, MMP-12, tissue inhibitors of matrix metalloproteinase (TIMP)-1, TIMP-2, and plasminogen activator inhibitor-1 (PAI-1) in db/db arteries. Finally, superior mesenteric artery blood flow was increased by 46% in 12 wk-old db/db mice, a finding that preceded mesenteric resistance artery remodeling. Conclusions These data suggest that flow-induced hemodynamic changes may supersede the local neurohormonal and metabolic milieu to culminate in hypertrophic outward remodeling of type 2 DM mesenteric resistance arteries.


Behavioural Brain Research | 2015

Traumatic brain injury induces neuroinflammation and neuronal degeneration that is associated with escalated alcohol self-administration in rats

Jacques P. Mayeux; Sophie X. Teng; Paige S. Katz; Nicholas W. Gilpin; Patricia E. Molina

BACKGROUND Traumatic brain injury (TBI) affects millions of people each year and is characterized by direct tissue injury followed by a neuroinflammatory response. The post-TBI recovery period can be associated with a negative emotional state characterized by alterations in affective behaviors implicated in the development of Alcohol Use Disorder in humans. The aim of this study was to test the hypothesis that post-TBI neuroinflammation is associated with behavioral dysfunction, including escalated alcohol intake. METHODS Adult male Wistar rats were trained to self-administer alcohol prior to counterbalanced assignment into naïve, craniotomy, and TBI groups by baseline drinking. TBI was produced by lateral fluid percussion (LFP; >2 ATM; 25ms). Alcohol drinking and neurobehavioral function were measured at baseline and following TBI in all experimental groups. Markers of neuroinflammation (GFAP and ED1) and neurodegeneration (FJC) were determined by fluorescence histochemistry in brains excised at sacrifice 19 days post-TBI. RESULTS The cumulative increase in alcohol intake over the 15 days post-TBI was greater in TBI animals compared to naïve controls. A higher rate of pre-injury alcohol intake was associated with a greater increase in post-injury alcohol intake in both TBI and craniotomy animals. Immediately following TBI, both TBI and craniotomy animals exhibited greater neurobehavioral dysfunction compared to naïve animals. GFAP, IBA-1, ED1, and FJC immunoreactivity at 19 days post-TBI was significantly higher in brains from TBI animals compared to both craniotomy and naïve animals. CONCLUSIONS These results show an association between post-TBI escalation of alcohol drinking and marked localized neuroinflammation at the site of injury. Moreover, these results highlight the relevance of baseline alcohol preference in determining post-TBI alcohol drinking. Further investigation to determine the contribution of neuroinflammation to increased alcohol drinking post-TBI is warranted.


Journal of Neurotrauma | 2015

Endocannabinoid Degradation Inhibition Improves Neurobehavioral Function, Blood–Brain Barrier Integrity, and Neuroinflammation following Mild Traumatic Brain Injury

Paige S. Katz; Jesse K. Sulzer; Renata Impastato; Sophie X. Teng; Emily Rogers; Patricia E. Molina

Traumatic brain injury (TBI) is an increasingly frequent and poorly understood condition lacking effective therapeutic strategies. Inflammation and oxidative stress (OS) are critical components of injury, and targeted interventions to reduce their contribution to injury should improve neurobehavioral recovery and outcomes. Recent evidence reveals potential protective, yet short-lived, effects of the endocannabinoids (ECs), 2-arachidonoyl glycerol (2-AG) and N-arachidonoyl-ethanolamine (AEA), on neuroinflammatory and OS processes after TBI. The aim of this study was to determine whether EC degradation inhibition after TBI would improve neurobehavioral recovery by reducing inflammatory and oxidative damage. Adult male Sprague-Dawley rats underwent a 5-mm left lateral craniotomy, and TBI was induced by lateral fluid percussion. TBI produced apnea (17±5 sec) and a delayed righting reflex (479±21 sec). Thirty minutes post-TBI, rats were randomized to receive intraperitoneal injections of vehicle (alcohol, emulphor, and saline; 1:1:18) or a selective inhibitor of 2-AG (JZL184, 16 mg/kg) or AEA (URB597, 0.3 mg/kg) degradation. At 24 h post-TBI, animals showed significant neurological and -behavioral impairment as well as disruption of blood-brain barrier (BBB) integrity. Improved neurological and -behavioral function was observed in JZL184-treated animals. BBB integrity was protected in both JZL184- and URB597-treated animals. No significant differences in ipsilateral cortex messenger RNA expression of interleukin (IL)-1β, IL-6, chemokine (C-C motif) ligand 2, tumor necrosis factor alpha, cyclooxygenase 2 (COX2), or nicotinamide adenine dinucleotide phosphate oxidase (NOX2) and protein expression of COX2 or NOX2 were observed across experimental groups. Astrocyte and microglia activation was significantly increased post-TBI, and treatment with JZL184 or URB597 blocked activation of both cell types. These findings suggest that EC degradation inhibition post-TBI exerts neuroprotective effects. Whether repeated dosing would achieve greater protection remains to be examined.


Vascular Pharmacology | 2012

Differential coronary resistance microvessel remodeling between type 1 and type 2 diabetic mice: Impact of exercise training

Aaron J. Trask; Maria A. Delbin; Paige S. Katz; Angelina Zanesco; Pamela A. Lucchesi

The goals of the present study were to compare coronary resistance microvessel (CRM) remodeling between type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) mice, and to determine the impact of aerobic exercise training on CRM remodeling in diabetes. Eight week old male mice were divided into T1DM: control sedentary (Control-SD), T1DM sedentary (T1DM-SD) induced by streptozotocin, and T1DM exercise trained (T1DM-TR); T2DM: control sedentary (Db/db-SD), T2DM sedentary (db/db-SD), and T2DM trained (db/db-TR). Aerobic exercise training (TR) was performed on a mouse treadmill for 8weeks. CRMs were isolated and mounted on a pressure myograph to measure and record vascular remodeling and mechanics. CRM diameters, wall thickness, stress-strain, incremental modulus remained unchanged in T1DM-SD mice compared to control, and exercise training showed no effect. In contrast, CRMs isolated from db/db-SD mice exhibited decreased luminal diameter with thicker microvascular walls, which significantly increased the wall:lumen ratio (Db/db-SD: 5.8±0.3 vs. db/db-SD: 8.9±0.7, p<0.001). Compared to db/db-SD mice, coronary arterioles isolated from db/db-TR mice had similar internal diameter and wall thickness, while wall:lumen ratio (6.8±0.2, p<0.05) and growth index (db/db-SD: 16.2 vs. db/db-TR: 4.3, % over Db/db) were reduced. These data show that CRMs undergo adverse inward hypertrophic remodeling only in T2DM, but not T1DM, and that aerobic exercise training can partially mitigate this process.


Brain Behavior and Immunity | 2015

Alcohol exposure after mild focal traumatic brain injury impairs neurological recovery and exacerbates localized neuroinflammation

Sophie X. Teng; Paige S. Katz; John K. Maxi; Jacques P. Mayeux; Nicholas W. Gilpin; Patricia E. Molina

Traumatic brain injury (TBI) represents a leading cause of morbidity and mortality among young individuals. Alcohol abuse is a risk factor associated with increased TBI incidence. In addition, up to 26% of TBI patients engage in alcohol consumption after TBI. Limited preclinical studies have examined the impact of post-injury alcohol exposure on TBI recovery. The aim of this study was to determine the isolated and combined effects of TBI and alcohol on cognitive, behavioral, and physical recovery, as well as on associated neuroinflammatory changes. Male Sprague-Dawley rats (∼300g) were subjected to a mild focal TBI by lateral fluid percussion (∼30PSI, ∼25ms) under isoflurane anesthesia. On day 4 after TBI, animals were exposed to either sub-chronic intermittent alcohol vapor (95% ethanol 14h on/10h off; BAL∼200mg/dL) or room air for 10days. TBI induced neurological dysfunction reflected by an increased neurological severity score (NSS) showed progressive improvement in injured animals exposed to room air (TBI/air). In contrast, TBI animals exposed to alcohol vapor (TBI/alcohol) showed impaired NSS recovery throughout the 10-day period of alcohol exposure. Open-field exploration test revealed an increased anxiety-like behavior in TBI/alcohol group compared to TBI/air group. Additionally, alcohol-exposed animals showed decreased locomotion and impaired novel object recognition. Immunofluorescence showed enhanced reactive astrocytes, microglial activation, and HMGB1 expression localized to the injured cortex of TBI/alcohol as compared to TBI/air animals. The expression of neuroinflammatory markers showed significant positive correlation with NSS. These findings indicated a close relationship between accentuated neuroinflammation and impaired neurological recovery from post-TBI alcohol exposure. The clinical implications of long-term consequences in TBI patients exposed to alcohol during recovery warrant further investigation.


Alcohol | 2015

Chronic alcohol increases CD8+ T-cell immunosenescence in simian immunodeficiency virus-infected rhesus macaques

Paige S. Katz; Robert W. Siggins; Connie Porretta; Megan Armstrong; Arnold H. Zea; Donald E. Mercante; Christopher Parsons; Ronald S. Veazey; Gregory J. Bagby; Steve Nelson; Patricia E. Molina; David A. Welsh

Activated CD8+ T-cells correlate with viral load and may foretell antiretroviral therapy (ART) failure. HIV infection has been suggested to accelerate immunosenescence through chronic persistent inflammation. Alcohol-use disorders (AUD) are prevalent in persons living with HIV/AIDS (PLWHA). We tested the hypothesis that hazardous alcohol consumption accelerates immune activation and immunosenescence. Immune activation and immunosenescence were examined in CD8+ T lymphocytes (CD3+CD4-CD8+) isolated from intestinal biopsies, axillary lymph nodes, and peripheral blood mononuclear cells (PBMCs) of chronic binge alcohol (CBA)-consuming simian immunodeficiency virus (SIV)-infected male rhesus macaques with and without antiretroviral therapy (ART; CBA/ART+, CBA/ART-) and in PBMCs isolated from a cohort of PLWHA. Polychromatic flow cytometry was used to phenotype cells isolated from intestinal biopsies, lymph nodes, and peripheral blood from rhesus macaques and PLWHA. The Alcohol Use Disorders Identification Test (AUDIT) identified hazardous alcohol drinking in PLWHA. Viral load was determined by RT-qPCR and telomere length was measured using qPCR. PBMC CD8+ T-cell activation (CD38+HLA-DR+) and immunosenescence (CD28-) were increased over baseline levels (857% ± 334, p < 0.05; 398% ± 80, p < 0.05, respectively) only in CBA animals not receiving ART. Viral load correlated with CD8+ T-cell immunosenescence in macaque PBMCs (r(s) = 0.49, p = 0.02). Activated immunosenescent T-cell (CD8+CD38+CD28-) frequencies in PBMCs from PLWHA significantly correlated with AUDIT scores (r(s) = 0.75, p = 0.001), while no correlation was observed with CD4+ T-cell and AUDIT scores (r(s) = -0.24, p = 0.38). Activated immunosenescent T-cells had shorter telomeres than CD8+ T-cells (CD8+CD28+) from PLWHA. Our results suggest that CBA and AUD augment immune activation and immunosenescence in SIV-infected macaques and PLWHA.


Journal of Neurotrauma | 2017

Inhibition of Endocannabinoid Degradation Improves Outcomes from Mild Traumatic Brain Injury: A Mechanistic Role for Synaptic Hyperexcitability

Jacques P. Mayeux; Paige S. Katz; Scott Edwards; Jason W Middleton; Patricia E. Molina

Traumatic brain injury (TBI) is an increasingly prevalent condition affecting soldiers, athletes, and motor vehicle accident victims. Unfortunately, it currently lacks effective therapeutic interventions. TBI is defined as a primary mechanical insult followed by a secondary cascade involving inflammation, apoptosis, release of reactive oxygen species, and excitotoxicity, all of which can cause synaptic changes, altered neuronal signaling, and, ultimately, behavioral changes. Previously we showed that preventing degradation of the endocannabinoid (EC) 2-acylglycerol (2-AG) with JZL184 after mild TBI attenuated neuroinflammation and improved recovery of neurobehavioral function during the early 24 h post-TBI period. The aim of this study was to extend the timeline of observations to 2 weeks post-injury and to investigate JZL184s impact on synaptic transmission, which we view as a potential mechanism for TBI-induced cellular and behavioral pathology. Adult male rats underwent mild TBI (mTBI) followed by a single intraperitoneal injection of JZL184 or vehicle 30 min post-injury. JZL184 administered-TBI animals showed improved neurobehavioral recovery compared with vehicle-injected TBI animals beginning 24 h post-injury and persisting for 2 weeks. JZL184-treated animals had significantly diminished gray and white matter astrocyte activation when compared with vehicle-treated animals at day 7 post-TBI. JZL184 administration significantly attenuated the increased pGluR1S845/GluR1 and pERK 1/2/ERK and the increases in miniature excitatory postsynaptic potential (mEPSC) frequency and amplitude observed in layer 5 pyramidal neurons at 10 days post-TBI. These results suggest a neuroprotective role for ECs in ameliorating the TBI-induced neurobehavioral, neuroinflammatory, and glutamate dyshomeostasis from mTBI. Further studies elucidating the cellular mechanisms involved are warranted.


Nutrition | 2009

Curcuminoids: Spicing up sympathovagal tone

Paige S. Katz; Aaron J. Trask; Pamela A. Lucchesi

Turmeric rhizome, the yellow pigment found in curry, is commonly cultivated in India and China for medicinal purposes, as a food preservative, and as a textile dye [1]. Curcuminoids are a group of polyphenols comprised of three active analogs: curcumin, demethoxycurcumin, and bisdemethoxycurcumin [2], that are isolated from the rhizome portion of the turmeric plant (Curcuma longa). Curcumin, the most active and abundant component of turmeric, was first isolated about two centuries ago. Researched extensively over the past few decades, curcumin has a plethora of beneficial effects including antioxidant, anti-inflammatory, antimicrobial and anticarcinogenic activities [3, 4]. Various clinical trials using curcumin are underway, including treatment for pancreatic cancer, colon cancer, psoriasis and Alzheimiers disease [4]. More recently, curcumin has been reported to exert cardioprotective actions in animal models of hypertensive heart disease, myocardial infarction, cardiac hypertrophy and heart failure. These effects were attributed to curcumins anti-oxidant and anti-inflammatory properties, as well as modulation of signal transduction cascades such as p38 and JNK, MAP kinases, NF-kB and p300 histone acetyltransferase-dependent transcriptional activation [5-8]. Curcumin also exerts beneficial effects in obesity- and diabetes-induced cardiovascular complications such as hyperlipidemia, hyperhomocysteinemia, insulin resistance, cardiac hypertrophy and atherosclerosis. In this issue of Nutrition, Pongchaidecha et al [9] determined whether curcuminoids prevent sympathovagal disturbance in obese mice fed a high-fat diet by reducing free fatty acids (FFAs). They report a new cardioprotective action of curcumin associated with FFA-induced sympathovagal disturbances, measured as a decrease in heart rate variability (HRV). Clinically and experimentally, HRV is assessed by power analysis of heart rate interval spectra and is used as a measure of sympathovagal balance. Decreased HRV is an independent risk factor for cardiovascular disease, and is implicated in the pathogenesis of heart failure, atherosclerosis, hypertension and diabetic cardiac autonomic neuropathy [10]. The concept that FFAs modulate HRV is not novel [11]. However, the finding that administration of curcuminoids for 12 weeks in obese mice ameliorates hyperlipidemia, specifically FFAs, and improves cardiac autonomic function is novel and clinically relevant. Despite this promising effect, caution has to be used when translating these findings to patient care. Although curcumin consumption at doses as high as 12 g/day for 3 months were safe in Phase 1 clinical trials [12], its cardioprotective effects in humans remain to be determined. Recent clinical trials with antioxidant therapy in patients with cardiovascular disease have been disappointing, in part due to the timing of therapeutic intervention. Future studies are required to determine whether prophylactic use of curcumin as a dietary supplement will prevent or reduce HRV and cardiovascular events in obese, diabetic patients. These studies raise several questions that warrant further investigation. Specific mechanisms by which curcumin lowers FFA levels, and how increased FFAs modulate HRV must be addressed. Results from such studies may identify new molecular mechanisms controlling HRV that serve as potential therapeutic targets. Nevertheless, the report by Pongchaidecha et al [9] provides further insight into the beneficial effect of curcuminoids on cardiovascular complications associated with obesity, and for the first time suggest that a dietary supplement could partially restore sympathovagal balance.


Vascular Pharmacology | 2016

The angiotensin receptor blocker losartan reduces coronary arteriole remodeling in type 2 diabetic mice

Kathryn E. Husarek; Paige S. Katz; Aaron J. Trask; Maarten L. Galantowicz; Mary J. Cismowski; Pamela A. Lucchesi

Cardiovascular complications are a leading cause of morbidity and mortality in type 2 diabetes mellitus (T2DM) and are associated with alterations of blood vessel structure and function. Although endothelial dysfunction and aortic stiffness have been documented, little is known about the effects of T2DM on coronary microvascular structural remodeling. The renin-angiotensin-aldosterone system plays an important role in large artery stiffness and mesenteric vessel remodeling in hypertension and T2DM. The goal of this study was to determine whether the blockade of AT1R signaling dictates vascular smooth muscle growth that partially underlies coronary arteriole remodeling in T2DM. Control and db/db mice were given AT1R blocker losartan via drinking water for 4 weeks. Using pressure myography, we found that coronary arterioles from 16-week db/db mice undergo inward hypertrophic remodeling due to increased wall thickness and wall-to-lumen ratio with a decreased lumen diameter. This remodeling was accompanied by decreased elastic modulus (decreased stiffness). Losartan treatment decreased wall thickness, wall-to-lumen ratio, and coronary arteriole cell number in db/db mice. Losartan treatment did not affect incremental elastic modulus. However, losartan improved coronary flow reserve. Our data suggest that Ang II-AT1R signaling mediates, at least in part, coronary arteriole inward hypertrophic remodeling in T2DM without affecting vascular mechanics, further suggesting that targeting the coronary microvasculature in T2DM may help reduce cardiac ischemic events.

Collaboration


Dive into the Paige S. Katz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maarten L. Galantowicz

The Research Institute at Nationwide Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Flavia M Souza

Universidade Federal do Espírito Santo

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge