Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pallav D. Patel is active.

Publication


Featured researches published by Pallav D. Patel.


Nature Chemical Biology | 2013

Paralog-selective Hsp90 inhibitors define tumor-specific regulation of HER2

Pallav D. Patel; Pengrong Yan; Paul M. Seidler; Hardik J. Patel; Weilin Sun; Chenghua Yang; Nanette L. S. Que; Tony Taldone; Paola Finotti; Ralph Stephani; Daniel T. Gewirth; Gabriela Chiosis

Although the Hsp90 chaperone family, comprised in humans of four paralogs, Hsp90α, Hsp90β, Grp94 and Trap-1, has important roles in malignancy, the contribution of each paralog to the cancer phenotype is poorly understood. This is in large part because reagents to study paralog-specific functions in cancer cells have been unavailable. Here we combine compound library screening with structural and computational analyses to identify purine-based chemical tools that are specific for Hsp90 paralogs. We show that Grp94 selectivity is due to the insertion of these compounds into a new allosteric pocket. We use these tools to demonstrate that cancer cells use individual Hsp90 paralogs to regulate a client protein in a tumor-specific manner and in response to proteome alterations. Finally, we provide new mechanistic evidence explaining why selective Grp94 inhibition is particularly efficacious in certain breast cancers.


Journal of Chemical Information and Modeling | 2008

3D QSAR and Molecular Docking Studies of Benzimidazole Derivatives as Hepatitis C Virus NS5B Polymerase Inhibitors

Pallav D. Patel; Maulik R. Patel; Neerja Kaushik-Basu; Tanaji T. Talele

The urgent need for novel HCV antiviral agents has provided an impetus for understanding the structural requisites of NS5B polymerase inhibitors at the molecular level. Toward this objective, comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) of 67 HCV NS5B polymerase inhibitors were performed using two methods. First, ligand-based 3D QSAR studies were performed based on the lowest energy conformations employing the atom fit alignment method. Second, receptor-based 3D QSAR models were derived from the predicted binding conformations obtained by docking all NS5B inhibitors at the allosteric binding site of NS5B (PDB ID: 2dxs). Results generated from the ligand-based model were found superior (r2cv values of 0.630 for CoMFA and 0.668 for CoMSIA) to those obtained by the receptor-based model (r2cv values of 0.536 and 0.561 for CoMFA and CoMSIA, respectively). The predictive ability of the models was validated using a structurally diversified test set of 22 compounds that had not been included in a preliminary training set of 45 compounds. The predictive r2 values for the ligand-based CoMFA and CoMSIA models were 0.734 and 0.800, respectively, while the corresponding predictive r2 values for the receptor-based CoMFA and CoMSIA models were 0.538 and 0.639, respectively. The greater potency of the tryptophan derivatives over that of the tyrosine derivatives was interpreted based on CoMFA steric and electrostatic contour maps. The CoMSIA results revealed that for a NS5B inhibitor to have appreciable inhibitory activity it requires hydrogen bond donor and acceptor groups at the 5-position of the indole ring and an R substituent at the chiral carbon, respectively. Interpretation of the CoMFA and CoMSIA contour maps in context of the topology of the allosteric binding site of NS5B provided insight into NS5B-inhibitor interactions. Taken together, the present 3D QSAR models were found to accurately predict the HCV NS5B polymerase inhibitory activity of structurally diverse test set compounds and to yield reliable clues for further optimization of the benzimidazole derivatives in the data set.


Chemistry & Biology | 2013

Identification of an Allosteric Pocket on Human Hsp70 Reveals a Mode of Inhibition of This Therapeutically Important Protein

Anna Rodina; Pallav D. Patel; Yanlong Kang; Yogita Patel; Imad Baaklini; Michael J. H. Wong; Tony Taldone; Pengrong Yan; Chenghua Yang; Ronnie Maharaj; Alexander Gozman; Maulik R. Patel; Hardik J. Patel; William J. Chirico; Hediye Erdjument-Bromage; Tanaji T. Talele; Jason C. Young; Gabriela Chiosis

Hsp70s are important cancer chaperones that act upstream of Hsp90 and exhibit independent anti-apoptotic activities. To develop chemical tools for the study of human Hsp70, we developed a homology model that unveils a previously unknown allosteric site located in the nucleotide binding domain of Hsp70. Combining structure-based design and phenotypic testing, we discovered a previously unknown inhibitor of this site, YK5. In cancer cells, this compound is a potent and selective binder of the cytosolic but not the organellar human Hsp70s and has biological activity partly by interfering with the formation of active oncogenic Hsp70/Hsp90/client protein complexes. YK5 is a small molecule inhibitor rationally designed to interact with an allosteric pocket of Hsp70 and represents a previously unknown chemical tool to investigate cellular mechanisms associated with Hsp70.


Journal of Medicinal Chemistry | 2013

Experimental and structural testing module to analyze paralogue-specificity and affinity in the Hsp90 inhibitors series.

Tony Taldone; Pallav D. Patel; Maulik R. Patel; Hardik J. Patel; Christopher E. Evans; Anna Rodina; Stefan O. Ochiana; Smit K. Shah; Mohammad Uddin; Daniel T. Gewirth; Gabriela Chiosis

We here describe the first reported comprehensive analysis of Hsp90 paralogue affinity and selectivity in the clinical Hsp90 inhibitor chemotypes. This has been possible through the development of a versatile experimental assay based on a new FP-probe (16a) that we both describe here. The assay can test rapidly and accurately the binding affinity of all major Hsp90 chemotypes and has a testing range that spans low nanomolar to millimolar binding affinities. We couple this assay with a computational analysis that allows for rationalization of paralogue selectivity and defines not only the major binding modes that relay pan-paralogue binding or, conversely, paralogue selectivity, but also identifies molecular characteristics that impart such features. The methods developed here provide a blueprint for parsing out the contribution of the four Hsp90 paralogues to the perceived biological activity with the current Hsp90 chemotypes and set the ground for the development of paralogue selective inhibitors.


Bioorganic & Medicinal Chemistry | 2011

Design, synthesis, and evaluation of small molecule Hsp90 probes

Tony Taldone; Danuta Zatorska; Pallav D. Patel; Hongliang Zong; Anna Rodina; James H. Ahn; Kamalika Moulick; Monica L. Guzman; Gabriela Chiosis

A number of compounds from different chemical classes are known to bind competitively to the ATP-pocket of Hsp90 and inhibit its chaperone function. The natural product geldanamycin was the first reported inhibitor of Hsp90 and since then synthetic inhibitors from purine, isoxazole and indazol-4-one chemical classes have been discovered and are currently or soon to be in clinical trials for the treatment of cancer. In spite of a similar binding mode to Hsp90, distinct biological profiles were demonstrated among these molecules, both in vitro and in vivo. To better understand the molecular basis for these dissimilarities, we report here the synthesis of chemical tools for three Hsp90 inhibitor classes. These agents will be useful for probing tumor-by-tumor the Hsp90 complexes isolated by specific inhibitors. Such information will lead to better understanding of tumor specific molecular markers to aid in their clinical development. It will also help to elucidate the molecular basis for the biological differences observed among Hsp90 inhibitors.


Journal of Medicinal Chemistry | 2014

Heat Shock Protein 70 Inhibitors. 1. 2,5′-Thiodipyrimidine and 5-(Phenylthio)pyrimidine Acrylamides as Irreversible Binders to an Allosteric Site on Heat Shock Protein 70

Yanlong Kang; Tony Taldone; Hardik J. Patel; Pallav D. Patel; Anna Rodina; Alexander Gozman; Ronnie Maharaj; Cristina C. Clement; Maulik R. Patel; Jeffrey L. Brodsky; Jason C. Young; Gabriela Chiosis

Heat shock protein 70 (Hsp70) is an important emerging cancer target whose inhibition may affect multiple cancer-associated signaling pathways and, moreover, result in significant cancer cell apoptosis. Despite considerable interest from both academia and pharmaceutical companies in the discovery and development of druglike Hsp70 inhibitors, little success has been reported so far. Here we describe structure–activity relationship studies in the first rationally designed Hsp70 inhibitor class that binds to a novel allosteric pocket located in the N-terminal domain of the protein. These 2,5′-thiodipyrimidine and 5-(phenylthio)pyrimidine acrylamides take advantage of an active cysteine embedded in the allosteric pocket to act as covalent protein modifiers upon binding. The study identifies derivatives 17a and 20a, which selectively bind to Hsp70 in cancer cells. Addition of high nanomolar to low micromolar concentrations of these inhibitors to cancer cells leads to a reduction in the steady-state levels of Hsp70-sheltered oncoproteins, an effect associated with inhibition of cancer cell growth and apoptosis. In summary, the described scaffolds represent a viable starting point for the development of druglike Hsp70 inhibitors as novel anticancer therapeutics.


Journal of Medicinal Chemistry | 2014

Heat Shock Protein 70 Inhibitors. 2. 2,5′-Thiodipyrimidines, 5-(Phenylthio)pyrimidines, 2-(Pyridin-3-ylthio)pyrimidines, and 3-(Phenylthio)pyridines as Reversible Binders to an Allosteric Site on Heat Shock Protein 70

Tony Taldone; Yanlong Kang; Hardik J. Patel; Maulik R. Patel; Pallav D. Patel; Anna Rodina; Yogita Patel; Alexander Gozman; Ronnie Maharaj; Cristina C. Clement; Alvin Lu; Jason C. Young; Gabriela Chiosis

The discovery and development of heat shock protein 70 (Hsp70) inhibitors is currently a hot topic in cancer. In the preceding paper in this issue (10.1021/jm401551n), we have described structure–activity relationship studies in the first Hsp70 inhibitor class rationally designed to bind to a novel allosteric pocket located in the N-terminal domain of the protein. These ligands contained an acrylamide to take advantage of an active cysteine embedded in the allosteric pocket and acted as covalent protein modifiers upon binding. Here, we perform chemical modifications around the irreversible inhibitor scaffold to demonstrate that covalent modification is not a requirement for activity within this class of compounds. The study identifies derivative 27c, which mimics the biological effects of the irreversible inhibitors at comparable concentrations. Collectively, the back-to-back manuscripts describe the first pharmacophores that favorably and selectively interact with a never explored pocket in Hsp70 and provide a novel blueprint for a cancer-oriented development of Hsp70-directed ligands.


Journal of Medicinal Chemistry | 2015

Structure–Activity Relationship in a Purine-Scaffold Compound Series with Selectivity for the Endoplasmic Reticulum Hsp90 Paralog Grp94

Hardik J. Patel; Pallav D. Patel; Stefan O. Ochiana; Pengrong Yan; Weilin Sun; Maulik R. Patel; Smit K. Shah; Elisa Tramentozzi; James C. Brooks; Alexander Bolaender; Liza Shrestha; Ralph Stephani; Paola Finotti; Cynthia A. Leifer; Zihai Li; Daniel T. Gewirth; Tony Taldone; Gabriela Chiosis

Grp94 is involved in the regulation of a restricted number of proteins and represents a potential target in a host of diseases, including cancer, septic shock, autoimmune diseases, chronic inflammatory conditions, diabetes, coronary thrombosis, and stroke. We have recently identified a novel allosteric pocket located in the Grp94 N-terminal binding site that can be used to design ligands with a 2-log selectivity over the other Hsp90 paralogs. Here we perform extensive SAR investigations in this ligand series and rationalize the affinity and paralog selectivity of choice derivatives by molecular modeling. We then use this to design 18c, a derivative with good potency for Grp94 (IC50 = 0.22 μM) and selectivity over other paralogs (>100- and 33-fold for Hsp90α/β and Trap-1, respectively). The paralog selectivity and target-mediated activity of 18c was confirmed in cells through several functional readouts. Compound 18c was also inert when tested against a large panel of kinases. We show that 18c has biological activity in several cellular models of inflammation and cancer and also present here for the first time the in vivo profile of a Grp94 inhibitor.


ACS Chemical Biology | 2014

Affinity Purification Probes of Potential Use To Investigate the Endogenous Hsp70 Interactome in Cancer

Anna Rodina; Tony Taldone; Yanlong Kang; Pallav D. Patel; John Koren; Pengrong Yan; Erica DaGama Gomes; Chenghua Yang; Maulik R. Patel; Liza Shrestha; Stefan O. Ochiana; Cristina Santarossa; Ronnie Maharaj; Alexander Gozman; Marc B. Cox; Hediye Erdjument-Bromage; Ronald C. Hendrickson; Leandro Cerchietti; Ari Melnick; Monica L. Guzman; Gabriela Chiosis

Heat shock protein 70 (Hsp70) is a family of proteins with key roles in regulating malignancy. Cancer cells rely on Hsp70 to inhibit apoptosis, regulate senescence and autophagy, and maintain the stability of numerous onco-proteins. Despite these important biological functions in cancer, robust chemical tools that enable the analysis of the Hsp70-regulated proteome in a tumor-by-tumor manner are yet unavailable. Here we take advantage of a recently reported Hsp70 ligand to design and develop an affinity purification chemical toolset for potential use in the investigation of the endogenous Hsp70-interacting proteome in cancer. We demonstrate that these tools lock Hsp70 in complex with onco-client proteins and effectively isolate Hsp70 complexes for identification through biochemical techniques. Using these tools we provide proof-of-concept analyses that glimpse into the complex roles played by Hsp70 in maintaining a multitude of cell-specific malignancy-driving proteins.


PLOS Neglected Tropical Diseases | 2010

Assay Strategies for the Discovery and Validation of Therapeutics Targeting Brugia pahangi Hsp90

Tony Taldone; Victoria Gillan; Weilin Sun; Anna Rodina; Pallav D. Patel; Kirsty Maitland; Kerry O'Neill; Gabriela Chiosis; Eileen Devaney

The chemotherapy of lymphatic filariasis relies upon drugs such as diethylcarbamazine and ivermectin that largely target the microfilarial stages of the parasite, necessitating continued treatment over the long reproductive life span of the adult worm. The identification of compounds that target adult worms has been a long-term goal of WHO. Here we describe a fluorescence polarization assay for the identification of compounds that target Hsp90 in adult filarial worms. The assay was originally developed to identify inhibitors of Hsp90 in tumor cells, and relies upon the ability of small molecules to inhibit the binding of fluorescently labelled geldanamycin to Hsp90. We demonstrate that the assay works well with soluble extracts of Brugia, while extracts of the free-living nematode C. elegans fail to bind the probe, in agreement with data from other experiments. The assay was validated using known inhibitors of Hsp90 that compete with geldanamycin for binding to Hsp90, including members of the synthetic purine-scaffold series of compounds. The efficacy of some of these compounds against adult worms was confirmed in vitro. Moreover, the assay is sufficiently sensitive to differentiate between binding of purine-scaffold compounds to human and Brugia Hsp90. The assay is suitable for high-throughput screening and provides the first example of a format with the potential to identify novel inhibitors of Hsp90 in filarial worms and in other parasitic species where Hsp90 may be a target.

Collaboration


Dive into the Pallav D. Patel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yanlong Kang

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Hardik J. Patel

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Pengrong Yan

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefan O. Ochiana

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Weilin Sun

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Chenghua Yang

Memorial Sloan Kettering Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge