Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paloma Sobrado-Calvo is active.

Publication


Featured researches published by Paloma Sobrado-Calvo.


Investigative Ophthalmology & Visual Science | 2009

Brn3a as a Marker of Retinal Ganglion Cells: Qualitative and Quantitative Time Course Studies in Naïve and Optic Nerve-Injured Retinas

Francisco M. Nadal-Nicolás; Manuel Jiménez-López; Paloma Sobrado-Calvo; Leticia Nieto-Lopez; Isabel Cánovas-Martínez; Manuel Salinas-Navarro; Manuel Vidal-Sanz; Marta Agudo

PURPOSE To characterize Brn3a expression in adult albino rat retinal ganglion cells (RGCs) in naïve animals and in animals subjected to complete intraorbital optic nerve transection (IONT) or crush (IONC). METHODS Rats were divided into three groups, naïve, IONT, and IONC. Two-, 5-, 9-, or 14-day postlesion (dpl) retinas were examined for immunoreactivity for Brn3a. Before the injury, the RGCs were labeled with Fluorogold (FG; Fluorochrome, Corp. Denver, CO). Brn3a retinal expression was also determined by Western blot analysis. The proportion of RGCs double labeled with Brn3a and FG was determined in radial sections. The temporal course of reduction in Brn3a(+) RGCs and FG(+) RGCs induced by IONC or IONT was assessed by quantifying, in the same wholemounts, the number of surviving FG-labeled RGCs and Brn3a(+)RGCs at the mentioned time points. The total number of FG(+)RGCs was automatically counted in naïve and injured retinas (2 and 5 dpl) or estimated by manual quantification in retinas processed at 9 and 14 dpl. All Brn3a immunopositive RGCs were counted using an automatic routine specifically developed for this purpose. This protocol allowed, as well, the investigation of the spatial distribution of these neurons. RESULTS Brn3a(+) cells were only present in the ganglion cell layer and showed a spatial distribution comparable to that of FG(+) cells. In the naïve retinal wholemounts the mean (mean +/- SEM; n = 14) total number of FG(+)RGCs and Brn3a(+)RGCs was 80,251 +/- 2,210 and 83,449 +/- 4,541, respectively. Whereas in the radial sections, 92.2% of the FG(+)RGCs were also Brn3a(+), 4.4% of the RGCs were Brn3a(+)FG(-) and 3.4% were FG(+)Brn3a(-). Brn3a expression pattern was maintained in injured RGCs. The temporal course of Brn3a(+)RGC and FG(+)RGC loss induced by IONC or IONT followed a similar trend, but Brn3a(+)RGCs loss was detected earlier than that of FG(+)RGCs. Independent of the marker used to detect the RGCs, it was observed that their loss was quicker and more severe after IONT than after IONC. CONCLUSIONS Brn3a can be used as a reliable, efficient ex vivo marker to identify and quantify RGCs in control and optic nerve-injured retinas.


Experimental Eye Research | 2009

Effects of different neurotrophic factors on the survival of retinal ganglion cells after a complete intraorbital nerve crush injury: A quantitative in vivo study

Guillermo Parrilla-Reverter; Marta Agudo; Paloma Sobrado-Calvo; Manuel Salinas-Navarro; María Paz Villegas-Pérez; Manuel Vidal-Sanz

We examined in adult Sprague Dawley rats the loss of retinal ganglion cells (RGCs) induced by complete intraorbital optic nerve crush (IONC) as well as the effects of several neurotrophic factors to prevent IONC-induced RGC loss. Completeness of the IONC lesion was assessed by investigating the orthograde and retrograde transport of neuronal tracers applied to the origin and termination of the retinotectal pathway. RGC survival after IONC alone or combined with intraocular injection of the neurotrophic factors NT-4, BDNF or CNTF was quantified at survival intervals ranging from 5 to 12 days post-lesion (dpl) by identifying RGCs that had been pre-labelled with fluorogold (FG). RGC loss first appeared at 7dpl and by 12dpl only 32% of the RGC population remained in the retina. Intraocular administration of NT-4, BDNF or CNTF resulted in almost a complete protection against IONC-induced RGC loss by 7dpl, and the protection remained significant by 12dpl only for NT-4 and BDNF. We have analyzed these results taking into account our previous studies on the loss of RGCs induced by intraorbital optic nerve transection (IONT) and concluded that RGC loss induced by IONC is slower and less severe than that following IONT. Moreover, as for IONT-induced RGC loss, IONC-induced RGC loss may also be prevented with administration of NT-4, BDNF or CNTF, though for NT-4 and CNTF their neuroprotective effects differ depending on the injury type. Overall this data underscore the importance of the type of ON injury on the pattern of RGC degeneration as well as in their response to neuroprotective treatments.


PLOS ONE | 2012

Whole Number, Distribution and Co-Expression of Brn3 Transcription Factors in Retinal Ganglion Cells of Adult Albino and Pigmented Rats

Francisco M. Nadal-Nicolás; Manuel Jiménez-López; Manuel Salinas-Navarro; Paloma Sobrado-Calvo; Juan J. Alburquerque-Béjar; Manuel Vidal-Sanz; Marta Agudo-Barriuso

The three members of the Pou4f family of transcription factors: Pou4f1, Pou4f2, Pou4f3 (Brn3a, Brn3b and Brn3c, respectively) play, during development, essential roles in the differentiation and survival of sensory neurons. The purpose of this work is to study the expression of the three Brn3 factors in the albino and pigmented adult rat. Animals were divided into these groups: i) untouched; ii) fluorogold (FG) tracing from both superior colliculli; iii) FG-tracing from one superior colliculus; iv) intraorbital optic nerve transection or crush. All retinas were dissected as flat-mounts and subjected to single, double or triple immunohistofluorescence The total number of FG-traced, Brn3a, Brn3b, Brn3c or Brn3 expressing RGCs was automatically quantified and their spatial distribution assessed using specific routines. Brn3 factors were studied in the general RGC population, and in the intrinsically photosensitive (ip-RGCs) and ipsilateral RGC sub-populations. Our results show that: i) 70% of RGCs co- express two or three Brn3s and the remaining 30% express only Brn3a (26%) or Brn3b; ii) the most abundant Brn3 member is Brn3a followed by Brn3b and finally Brn3c; iii) Brn3 a-, b- or c- expressing RGCs are similarly distributed in the retina; iv) The vast majority of ip-RGCs do not express Brn3; v) The main difference between both rat strains was found in the population of ipsilateral-RGCs, which accounts for 4.2% and 2.5% of the total RGC population in the pigmented and albino strain, respectively. However, more ipsilateral-RGCs express Brn3 factors in the albino than in the pigmented rat; vi) RGCs that express only Brn3b and RGCs that co-express the three Brn3 members have the biggest nuclei; vii) After axonal injury the level of Brn3a expression in the surviving RGCs decreases compared to control retinas. Finally, this work strengthens the validity of Brn3a as a marker to identify and quantify rat RGCs.


The Journal of Comparative Neurology | 2007

Rat retinal microglial cells under normal conditions, after optic nerve section, and after optic nerve section and intravitreal injection of trophic factors or macrophage inhibitory factor

Paloma Sobrado-Calvo; Manuel Vidal-Sanz; María Paz Villegas-Pérez

Retinal microglial cells may have a role in both degeneration and neuroprotection of retinal ganglion cells (RGC) after optic nerve (ON) section. We have used NDPase enzymohistochemistry to label adult rat retinal microglial cells and have studied these cells under normal conditions, after left ON section, and after left ON section and eye puncture or intravitreal injection of different substances: vehicle, brain‐derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin 3 (NT3), or macrophage inhibitory factor (MIF). Resident microglial cells are present in four layers in the adult rat retina: the nerve fiber layer (NFL), ganglion cell layer (GCL), inner plexiform layer (IPL), and outer plexiform layer (OPL). Left ON section induces microglial activation in the ipsilateral and contralateral retina as manifested by stronger staining intensity in both retinas and increased microglial cell densities in the NFL, IPL, and GCL of the ipsilateral retina. Left ON section followed by left eye puncture or intravitreal injection increases microglial cell density in both retinas and induces changes in the microglial cells of the ipsilateral retina that vary depending on the substance injected: BDNF injections delay microglial activation, possibly through retinal ganglion cell neuroprotection, whereas NT3 partially inhibits microglial activation in the NFL; MIF injections have no clear effects on microglial activation. In conclusion, retinal microglial cells become activated after an ON section and react more intensely when the eye is also punctured or injected, and this response may be altered by using neurotrophic factors, although the effects of MIF are less clear. J. Comp. Neurol. 501:866–878, 2007.


Neurotoxicity Research | 2000

Death and neuroprotection of retinal ganglion cells after different types of injury

Manuel Vidal-Sanz; M.P. Lafuente; Paloma Sobrado-Calvo; Inmaculada Selles-Navarro; Elena Rodriguez; Sergio Mayor-Torroglosa; María Paz Villegas-Pérez

In adult Sprague—Dawley rats, retinal ganglion cell survival was investigated after intraorbital optic nerve section and after transient ischemia of the retina induced by elevation of the intraocular pressure or by selective ligature of the ophthalmic vessels. The thickness of the inner nuclear and inner plexiform layers was also assessed after transient periods (120 min) of retinal ischemia induced by selective ligature of the ophthalmic vessels. In addition, we have also investigated the neuroprotective effects of different substances in these paradigms. The intraocular injection of brain-derived neurotrophic factor increased RGC survival after retinal ischemia induced by elevation of the intraocular pressure or by selective ligature of the ophthalmic vessels. The caspase inhibitor Z-DEVD increased retinal ganglion cell survival after optic nerve section and also after 90 min of retinal ischemia induced by selective ligature of the ophthalmic vessels. The peptide Bcl-2 did not increase retinal ganglion cell survival after optic nerve section but increased retinal ganglion cell survival after 60 or 90 min of retinal ischemia induced by selective ligature of the ophthalmic vessels. Finally, BDNF, nifedipine, naloxone and bcl-2 prevented in part the decrease in thickness of the inner nuclear layer and inner plexiform layer induced by selective ligature of the ophthalmic vessels. Our results suggest that retinal ganglion cell loss induced by different types of injury, may be prevented by substances with neuroprotective effects, by altering steps of the cascade of events leading to cell death.


Experimental Eye Research | 2011

Brain derived neurotrophic factor maintains Brn3a expression in axotomized rat retinal ganglion cells

M.C. Sánchez-Migallón; Francisco M. Nadal-Nicolás; Manuel Jiménez-López; Paloma Sobrado-Calvo; Manuel Vidal-Sanz; Marta Agudo-Barriuso

The transcription factor Brn3a has been reported to be a good marker for adult rat retinal ganglion cells in control and injured retinas. However, it is still unclear if Brn3a expression declines progressively by the injury itself or otherwise its expression is maintained in retinal ganglion cells that, though being injured, are still alive, as might occur when assessing neuroprotective therapies. Therefore, we have automatically quantified the whole population of surviving Brn3a positive retinal ganglion cells in retinas subjected to intraorbital optic nerve transection and treated with either brain derived neurotrophic factor or vehicle. Brain derived neurotrophic factor is known to delay retinal ganglion cell death after axotomy. Thus, comparison of both groups would inform of the suitability of Brn3a as a retinal ganglion cell marker when testing neuroprotective molecules. As internal control, retinal ganglion cells were, as well, identified in all retinas by retrogradely tracing them with fluorogold. Our data show that at all the analyzed times post-lesion, the numbers of Brn3a positive retinal ganglion cells and of fluorogold positive retinal ganglion cells are significantly higher in the brain derived neurotrophic factor-treated retinas compared to the vehicle-treated ones. Moreover, detailed isodensity maps of the surviving Brn3a positive retinal ganglion cells show that a single injection of brain derived neurotrophic factor protects retinal ganglion cells throughout the entire retina. In conclusion, Brn3a is a reliable retinal ganglion cell marker that can be used to accurately measure the potential effect of a given neuroprotective therapy.


Investigative Ophthalmology & Visual Science | 2009

Immediate Upregulation of Proteins Belonging to Different Branches of the Apoptotic Cascade in the Retina after Optic Nerve Transection and Optic Nerve Crush

Marta Agudo; Maria Cruz Pérez-Marín; Paloma Sobrado-Calvo; Ulrika Lönngren; Manuel Salinas-Navarro; I. Cánovas; Francisco M. Nadal-Nicolás; Jaime Miralles-Imperial; Finn Hallböök; Manuel Vidal-Sanz

PURPOSE To further investigate the molecular signals underlying optic nerve (ON) injury, the authors analyzed in adult control, ON-transected, and ON-crushed retinas the expression pattern and time-course regulation of the following proteins, all of which are linked to apoptosis through different pathways: Stat 1, caspase 11 (inflammation and death), cathepsins C and B (lysosomal death pathway), calpain 1 (endoplasmic reticulum stress), calreticulin (apoptosis marker), Jun (early response), and aryl hydrocarbon receptor (cell cycle arrest). METHODS Adult female rats were subjected to intraorbital optic nerve transection (IONT) or intraorbital optic nerve crush (IONC). Protein from naive and ON-injured adult rat retinas was extracted at different times postlesion, and Western blotting experiments were performed. For immunohistofluorescence analyses, retinal ganglion cells (RGCs) were retrogradely identified with fluorogold applied to the superior colliculi 1 week before injury. RESULTS Western blotting analyses revealed upregulation of all the analyzed proteins as early as 12 hours postlesion (hpl), peaking at 48 hpl, in agreement with our previous RNA study findings. Furthermore, immunohistofluorescence to radial sections showed that all but Stat 1 were expressed by the primarily injured neurons, the RGCs, as seen by colocalization with fluorogold. CONCLUSIONS All analyzed proteins were upregulated in the retina after IONT or IONC as early as 12 hpl, indicating that ON injury regulates several branches of the apoptotic cascade and suggesting that commitment to death might be an earlier event than previously anticipated.


Vision Research | 2009

Time-course of the retinal nerve fibre layer degeneration after complete intra-orbital optic nerve transection or crush: A comparative study

Guillermo Parrilla-Reverter; Marta Agudo; Francisco M. Nadal-Nicolás; Luis Alarcón-Martínez; Manuel Jiménez-López; Manuel Salinas-Navarro; Paloma Sobrado-Calvo; Jose Manuel Bernal-Garro; María Paz Villegas-Pérez; Manuel Vidal-Sanz

We examined qualitatively and quantitatively in adult rat retinas the temporal degeneration of the nerve fibre layer after intra-orbital optic nerve transection (IONT) or crush (IONC). Retinal ganglion cell (RGC) axons were identified by their heavy neurofilament subunit phosphorylated isoform (pNFH) expression. Optic nerve injury induces a progressive axonal degeneration which after IONT proceeds mainly with abnormal pNFH-accumulations in RCG axons and after IONC in RGCs somas and dendrites. Importantly, this aberrant pNFH-expression pattern starts earlier and is more dramatic after IONT than after IONC, highlighting the importance that the type of injury has on the time-course of RGC degeneration.


Frontiers in Neuroanatomy | 2014

Displaced retinal ganglion cells in albino and pigmented rats

Francisco M. Nadal-Nicolás; Manuel Salinas-Navarro; Manuel Jiménez-López; Paloma Sobrado-Calvo; María Paz Villegas-Pérez; Manuel Vidal-Sanz; Marta Agudo-Barriuso

We have studied in parallel the population of displaced retinal ganglion cells (dRGCs) and normally placed (orthotopic RGCs, oRGCs) in albino and pigmented rats. Using retrograde tracing from the optic nerve, from both superior colliculi (SC) or from the ipsilateral SC in conjunction with Brn3 and melanopsin immunodetection, we report for the first time their total number and topography as well as the number and distribution of those dRGCs and oRGCs that project ipsi- or contralaterally and/or that express any of the three Brn3 isoforms or melanopsin. The total number of RGCs (oRGCs+dRGCs) is 84,706 ± 1249 in albino and 90,440 ± 2236 in pigmented, out of which 2383 and 2428 are melanopsin positive (m-RGCs), respectively. Regarding dRGCs: i/ albino rats have a significantly lower number of dRGCs than pigmented animals (0.5% of the total number of RGCs vs. 2.5%, respectively), ii/ dRGCs project massively to the contralateral SC, iii/ the percentage of ipsilaterality is higher for dRGCs than for oRGCs, iv/ a higher proportion of ipsilateral dRGCs is observed in albino than pigmented animals, v/ dRGC topography is very specific, they predominate in the equatorial temporal retina, being densest where the oRGCs are densest, vi/ Brn3a detects all dRGCs except half of the ipsilateral ones and those that express melanopsin, vii/ the proportion of dRGCs that express Brn3b or Brn3c is slightly lower than in the oRGC population, viii/ a higher percentage of dRGCs (13% albino, 9% pigmented) than oRGCs (2.6%) express melanopsin, ix/ few m-RGCs (displaced and orthotopic) project to the ipsilateral SC, x/ the topography of m-dRGCs does not resemble the general distribution of dRGCs, xi/ The soma size in m-oRGCs ranges from 10 to 21 μm and in m-dRGCs from 8 to 15 μm, xii/ oRGCs and dRGCs have the same susceptibility to axonal injury and ocular hypertension. Although the role of mammalian dRGCs remains to be determined, our data suggest that they are not misplaced by an ontogenic mistake.


Investigative Ophthalmology & Visual Science | 2015

Comparison of Retinal Nerve Fiber Layer Thinning and Retinal Ganglion Cell Loss After Optic Nerve Transection in Adult Albino Rats.

Giuseppe Rovere; Francisco M. Nadal-Nicolás; Marta Agudo-Barriuso; Paloma Sobrado-Calvo; Leticia Nieto-Lopez; Carlo Nucci; María Paz Villegas-Pérez; Manuel Vidal-Sanz

PURPOSE We compared the time-course and magnitude of retinal nerve fiber layer (RNFL) thinning with that of retinal ganglion cell (RGC) loss after intraorbital optic nerve transection (IONT) in adult rats. METHODS At 3, 7, 12, or 21 days, or 1, 2, or 4 months after ONT, the retinas were imaged with spectral-domain optical coherence tomography (SD-OCT) using the circular-peripapillary scan and volume scan raster pattern (61 horizontal sections equally spaced) both centered in the optic nerve. In all sections, the RNFL and retinal thickness were measured to obtain the total values of the peripapillary scan and the values of three concentric sectors (400, 1200, and 2400 μm in diameter) from the volume scan. After SD-OCT, retinas were dissected and immunoreacted for Brn3a and neurofilaments (pNFH) to identify RGCs and their intraretinal axons, respectively. Total numbers of RGCs were quantified. RESULTS Thinning of the RNFL was first observed at 12 days in peripapillary scan (10% decrease) and progressed up to 4 months (72% decrease). The volume scan showed transient RNFL swelling in central and medial sectors at 3, 7, and 12 days followed by progressive significant thinning first observed at 21 days (central sector, 30%; medial sector, 40%) and 12 days (peripheral sector, 15%), respectively. Following IONT, Brn3a+ RGCs decreased to approximately 80%, 52%, 17%, 9%, 5%, 3%, and 2% at 3, 7, 12, 21 days, and at 1, 2, and 4 months, respectively. Retinal ganglion cell axon immunodetection decreased from 12 days onwards. CONCLUSIONS After IONT, RGC death is more severe and precedes thinning of the RNFL.

Collaboration


Dive into the Paloma Sobrado-Calvo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giuseppe Rovere

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge