Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pamela L. Zeitlin is active.

Publication


Featured researches published by Pamela L. Zeitlin.


Journal of Clinical Investigation | 1997

In vitro pharmacologic restoration of CFTR-mediated chloride transport with sodium 4-phenylbutyrate in cystic fibrosis epithelial cells containing delta F508-CFTR.

Ronald C. Rubenstein; Marie E. Egan; Pamela L. Zeitlin

The most common cystic fibrosis transmembrane conductance regulator mutation, delta F508-CFTR, is a partially functional chloride channel that is retained in the endoplasmic reticulum and degraded. We hypothesize that a known transcriptional regulator, sodium 4-phenylbutyrate (4PBA), will enable a greater fraction of delta F508-CFTR to escape degradation and appear at the cell surface. Primary cultures of nasal polyp epithelia from CF patients (delta F508 homozygous or heterozygous), or the CF bronchial epithelial cell line IB3-1 (delta F508/W1282X) were exposed to 4PBA for up to 7 d in culture. 4PBA treatment at concentrations of 0.1 and 2 mM resulted in the restoration of forskolin-activated chloride secretion. Protein kinase A-activated, linear, 10 pS chloride channels appeared at the plasma membrane of IB3-1 cells at the tested concentration of 2.5 mM. Treatment of IB3-1 cells with 0.1-1 mM 4PBA and primary nasal epithelia with 5 mM 4PBA also resulted in the appearance of higher molecular mass forms of CFTR consistent with addition and modification of oligosaccharides in the Golgi apparatus, as detected by immunoblotting of whole cell lysates with anti-CFTR antisera. Immunocytochemistry in CF epithelial cells treated with 4PBA was consistent with increasing amounts of delta F508-CFTR. These data indicate that 4PBA is a promising pharmacologic agent for inducing correction of the CF phenotype in CF patients carrying the delta F508 mutation.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Biodegradable polymer nanoparticles that rapidly penetrate the human mucus barrier

Benjamin C. Tang; Michelle R. Dawson; Samuel K. Lai; Ying Ying Wang; Jung Soo Suk; Ming Yang; Pamela L. Zeitlin; Michael P. Boyle; Jie Fu; Justin Hanes

Protective mucus coatings typically trap and rapidly remove foreign particles from the eyes, gastrointestinal tract, airways, nasopharynx, and female reproductive tract, thereby strongly limiting opportunities for controlled drug delivery at mucosal surfaces. No synthetic drug delivery system composed of biodegradable polymers has been shown to penetrate highly viscoelastic human mucus, such as non-ovulatory cervicovaginal mucus, at a significant rate. We prepared nanoparticles composed of a biodegradable diblock copolymer of poly(sebacic acid) and poly(ethylene glycol) (PSA-PEG), both of which are routinely used in humans. In fresh undiluted human cervicovaginal mucus (CVM), which has a bulk viscosity approximately 1,800-fold higher than water at low shear, PSA-PEG nanoparticles diffused at an average speed only 12-fold lower than the same particles in pure water. In contrast, similarly sized biodegradable nanoparticles composed of PSA or poly(lactic-co-glycolic acid) (PLGA) diffused at least 3,300-fold slower in CVM than in water. PSA-PEG particles also rapidly penetrated sputum expectorated from the lungs of patients with cystic fibrosis, a disease characterized by hyperviscoelastic mucus secretions. Rapid nanoparticle transport in mucus is made possible by the efficient partitioning of PEG to the particle surface during formulation. Biodegradable polymeric nanoparticles capable of overcoming human mucus barriers and providing sustained drug release open significant opportunities for improved drug and gene delivery at mucosal surfaces.


Human Gene Therapy | 2003

Phase I Trial of Intranasal and Endobronchial Administration of a Recombinant Adeno-Associated Virus Serotype 2 (rAAV2)-CFTR Vector in Adult Cystic Fibrosis Patients: A Two-Part Clinical Study

Terence R. Flotte; Pamela L. Zeitlin; Thomas C. Reynolds; Alison E. Heald; Patty Pedersen; Suzanne E. Beck; Carol Conrad; Lois Brass-Ernst; Margaret Humphries; Kevin J. Sullivan; Randall C. Wetzel; George A. Taylor; Barrie J. Carter; William B. Guggino

Recombinant adeno-associated serotype 2-based vectors (rAAV2) possess a number of theoretical advantages for cystic fibrosis (CF) gene therapy because they elicit little or no inflammatory response and generally result in stable expression. rAAV2 vectors expressing the cystic fibrosis transmembrane conductance regulator (CFTR) gene have previously been shown to mediate stable correction of the CF defect in CF bronchial epithelial cells and stable expression of CFTR in rabbit and nonhuman primate models. Here we report the results of the first trial initiated with rAAV in humans, a phase I study in 25 adult and adolescent CF patients with mild to moderate lung disease. Doses of the rAAV-CFTR vector (tgAAVCF) ranging from 3 x 10(1) to 1 x 10(9) replication units (RU), which is equivalent to approximately 6 x 10(4) to 2 x 10(12) DNase resistant particles (DRP), were administered to one side of the nose and to the superior segment of the lower lobe of the right lung. Several adverse events were noted prior to and/or after vector delivery, but most of them appeared to be related to the endogenous CF lung disease or a result of the bronchoscopic procedures. Only one of the serious events was judged to be possibly vector-related (based on temporal association), and this event was a pulmonary exacerbation very similar to several others experienced by the same subject in the three months preceding vector delivery. Vector shedding was minimal throughout the study, and serum-neutralizing antibodies were detected after vector delivery to subjects in the highest dosage cohorts. Gene transfer as measured by DNA polymerase chain reaction (PCR) was not observed until cohort 10 in nasal and bronchial epithelia. Sporadic low-level copy numbers suggested gene transfer of anywhere from 0.002 copies per cell up to 0.5 copies per cell was possible; however, DNA PCR was positive in lungs prior to direct dosing suggesting aspiration from the nasal dosing. These data indicate the need for continued evaluation of rAAV-CFTR vectors in additional clinical trials.


The Lancet Respiratory Medicine | 2014

Ataluren for the treatment of nonsense-mutation cystic fibrosis: a randomised, double-blind, placebo-controlled phase 3 trial

Eitan Kerem; Michael W. Konstan; Kris De Boeck; Frank J. Accurso; Isabelle Sermet-Gaudelus; Michael Wilschanski; J. Stuart Elborn; Paola Melotti; I. Bronsveld; Isabelle Fajac; Anne Malfroot; Daniel B. Rosenbluth; Patricia A Walker; Susanna A. McColley; Christiane Knoop; Serena Quattrucci; Ernst Rietschel; Pamela L. Zeitlin; Jay Barth; Gary L. Elfring; Ellen Welch; Arthur Branstrom; Robert Spiegel; Stuart W. Peltz; Temitayo Ajayi; Steven M. Rowe

BACKGROUND Ataluren was developed to restore functional protein production in genetic disorders caused by nonsense mutations, which are the cause of cystic fibrosis in 10% of patients. This trial was designed to assess the efficacy and safety of ataluren in patients with nonsense-mutation cystic fibrosis. METHODS This randomised, double-blind, placebo-controlled, phase 3 study enrolled patients from 36 sites in 11 countries in North America and Europe. Eligible patients with nonsense-mutation cystic fibrosis (aged ≥ 6 years; abnormal nasal potential difference; sweat chloride >40 mmol/L; forced expiratory volume in 1 s [FEV1] ≥ 40% and ≤ 90%) were randomly assigned by interactive response technology to receive oral ataluren (10 mg/kg in morning, 10 mg/kg midday, and 20 mg/kg in evening) or matching placebo for 48 weeks. Randomisation used a block size of four, stratified by age, chronic inhaled antibiotic use, and percent-predicted FEV1. The primary endpoint was relative change in percent-predicted FEV1 from baseline to week 48, analysed in all patients with a post-baseline spirometry measurement. This study is registered with ClinicalTrials.gov, number NCT00803205. FINDINGS Between Sept 8, 2009, and Nov 30, 2010, 238 patients were randomly assigned, of whom 116 in each treatment group had a valid post-baseline spirometry measurement. Relative change from baseline in percent-predicted FEV1 did not differ significantly between ataluren and placebo at week 48 (-2.5% vs -5.5%; difference 3.0% [95% CI -0.8 to 6.3]; p=0.12). The number of pulmonary exacerbations did not differ significantly between treatment groups (rate ratio 0.77 [95% CI 0.57-1.05]; p=0.0992). However, post-hoc analysis of the subgroup of patients not using chronic inhaled tobramycin showed a 5.7% difference (95% CI 1.5-10.1) in relative change from baseline in percent-predicted FEV1 between the ataluren and placebo groups at week 48 (-0.7% [-4.0 to 2.1] vs -6.4% [-9.8 to -3.7]; nominal p=0.0082), and fewer pulmonary exacerbations in the ataluern group (1.42 events [0.9-1.9] vs 2.18 events [1.6-2.7]; rate ratio 0.60 [0.42-0.86]; nominal p=0.0061). Safety profiles were generally similar for ataluren and placebo, except for the occurrence of increased creatinine concentrations (ie, acute kidney injury), which occurred in 18 (15%) of 118 patients in the ataluren group compared with one (<1%) of 120 patients in the placebo group. No life-threatening adverse events or deaths were reported in either group. INTERPRETATION Although ataluren did not improve lung function in the overall population of nonsense-mutation cystic fibrosis patients who received this treatment, it might be beneficial for patients not taking chronic inhaled tobramycin. FUNDING PTC Therapeutics, Cystic Fibrosis Foundation, US Food and Drug Administrations Office of Orphan Products Development, and the National Institutes of Health.


PLOS ONE | 2009

CFTR Is a Negative Regulator of NFκB Mediated Innate Immune Response

Neeraj Vij; Steven Mazur; Pamela L. Zeitlin

Background Dysfunctional CFTR in the airways is associated with elevated levels of NFκB mediated IL-8 signaling leading to neutrophil chemotaxis and chronic lung inflammation in cystic fibrosis. The mechanism(s) by which CFTR mediates inflammatory signaling is under debate. Methodology/Principal Findings We tested the hypothesis that wt-CFTR down-regulates NFκB mediated IL-8 secretion. We transiently co-expressed wt-CFTR and IL-8 or NFκB promoters driving luciferase expression in HEK293 cells. Wt-CFTR expression in HEK293 cells suppresses both basal and IL1β induced IL-8, and NFκB promoter activities as compared to the control cells transfected with empty vector (p<0.05). We also confirmed these results using CFBE41o- cells and observed that cells stably transduced with wt-CFTR secrete significantly lower amounts of IL-8 chemokine as compared to non-transfected control cells. To test the hypothesis that CFTR must be localized to cell surface lipid rafts in polarized airway epithelial cells in order to mediate the inflammatory response, we treated CFBE41o- cells that had been stably transduced with wt-CFTR with methyl-β-cyclodextrin (CD). At baseline, CD significantly (p<0.05) induced IL-8 and NFκB reporter activities as compared to control cells suggesting a negative regulation of NFκB mediated IL-8 signaling by CFTR in cholesterol-rich lipid rafts. Untreated cells exposed to the CFTR channel blocker CFTR-172 inhibitor developed a similar increase in IL-8 and NFκB reporter activities suggesting that not only must CFTR be present on the cell surface but it must be functional. We verified these results in vivo by comparing survival, body weight and pro-inflammatory cytokine response to P. aeruginosa LPS in CFTR knock out (CFKO) mice as compared to wild type controls. There was a significant (p<0.05) decrease in survival and body weight, an elevation in IL-1β in whole lung extract (p<0.01), as well as a significant increase in phosphorylated IκB, an inducer of NFκB mediated signaling in the CFKO mice. Conclusions/Significance Our data suggest that CFTR is a negative regulator of NFκB mediated innate immune response and its localization to lipid rafts is involved in control of inflammation.


Journal of Biological Chemistry | 2006

Selective inhibition of ERAD rescues ùF508-CFTR and suppresses IL8 levels: therapeutic implications

Neeraj Vij; Shengyun Fang; Pamela L. Zeitlin

Endoplasmic reticulum (ER)-associated degradation (ERAD) is the major quality control pathway of the cell. The most common disease-causing protein folding mutation, ΔF508-cystic fibrosis transmembrane regulator (CFTR), is destroyed by ERAD to cause cystic fibrosis (CF). p97/valosin-containing protein (VCP) physically interacts with gp78/autocrine motility factor receptor to couple ubiquitination, retrotranslocation, and proteasome degradation of misfolded proteins. We show here that p97/VCP and gp78 form complexes with CFTR during translocation from the ER for degradation by the cytosolic proteasome. Interference in the VCP-CFTR complex promoted accumulation of immature CFTR in the ER and partial rescue of functional chloride channels to the cell surface. Moreover, under these conditions, interleukin-8 (IL8), the expression of which is regulated by the proteasome, was reduced. Inhibition of the proteasome with bortezomib (PS-341/Velcade) also rescued CFTR, but with less efficiency, and suppressed NFκB-mediated IL8 activation. The inhibition of the major stress-inducible transcription factor CHOP (CCAAT/enhancer-binding protein homologous protein)/GADD153 together with bortezomib was most effective in repressing NFκB-mediated IL8 activation compared with interference of VCP, MLN-273 (proteasome inhibitor), or 4-phenylbutyrate (histone deacetylase inhibitor). Immunoprecipitation of ΔF508-CFTR from primary CF bronchial epithelial cells confirmed the interaction with VCP and associated chaperones in CF. We conclude that VCP is an integral component of ERAD and cellular stress pathways induced by the unfolded protein response and may be central to the efficacy of CF drugs that target the ubiquitin-proteasome pathway.


Journal of Clinical Investigation | 1991

Severe deficiency of cystic fibrosis transmembrane conductance regulator messenger RNA carrying nonsense mutations R553X and W1316X in respiratory epithelial cells of patients with cystic fibrosis.

Ada Hamosh; Bruce C. Trapnell; Pamela L. Zeitlin; Chahrzad Montrose-Rafizadeh; Beryl J. Rosenstein; Ronald G. Crystal; Garry R. Cutting

Cystic fibrosis (CF) is the most common, lethal inherited disorder in the Caucasian population. We have recently reported two African-American patients with nonsense mutations in each CF gene and severe pancreatic disease, but mild pulmonary disease. In order to examine the effect of these nonsense mutations on CF gene expression, bronchial and nasal epithelial cells were obtained from one of these patients (no. 246), a compound heterozygote for nonsense mutations R553X and W1316X; a healthy normal individual; a patient (no. 528) homozygous for the common CF mutation (delta F508); and a CF patient (no. 272) who carries the R553X mutation and a missense mutation, S549N. When mRNA from bronchial cells of the normal individual, the delta F508 homozygote, and the S549N/R553X compound heterozygote was reverse transcribed and amplified by polymerase chain reaction using primers derived from the CF gene, DNA fragments of the predicted size were observed. However, patient no. 246 with nonsense mutations in each CF gene has no detectable cystic fibrosis transmembrane conductance regulator (CFTR) messenger RNA, and therefore should have severely diminished, and possibly absent, CFTR protein. Furthermore, less than 2% of the CFTR transcripts in nasal epithelial cells from patient no. 272 (S549N/R553X) were derived from the gene with the nonsense mutation. We conclude that severe reduction in CFTR mRNA causes CF, but can have different consequences in the lung and pancreas.


Journal of Clinical Investigation | 1999

Novel pharmacologic therapies for cystic fibrosis

Pamela L. Zeitlin

The diagnosis of inherited disorders is increasingly more complex. It is no longer sufficient to make a clinical diagnosis. We must determine the precise sequence abnormalities in order to select the appropriate therapeutic approach. Whereas currently approved pharmaceuticals target the symptoms of CF, progress must now be made in repairing the nucleotide abnormality or intervening to assist a defective protein. This will also be true in other disorders. Monogenic inherited diseases affecting widely different gene families, tissues, or enzymatic pathways reveal common themes in their disruption of cellular processes. It is increasingly more likely that progress made with one orphan disease may favorably influence therapeutic development for another, as is currently being recognized for diseases that result from protein folding or trafficking abnormalities. It has been harder to foresee that drugs developed for one purpose, such as the butyrates for excretion of waste nitrogen, also have profound effects on gene regulation and alternative enzymatic pathways in diseases such as the hemoglobinopathies, cystic fibrosis, adrenoleukodystrophy, and cancer. CF is a complex systemic inherited disorder with a wide variety of severity. The relative abundance of new compounds directed at the Class II trafficking mutation ΔF508 is encouraging and likely to benefit the majority of patients with CF. Because a single mutation can affect both protein function and location, combination therapies may be needed. Multiple approaches will almost certainly be required to control this disease.


The Journal of Pediatrics | 2008

Current Treatment Recommendations for Correcting Vitamin D Deficiency in Pediatric Patients with Cystic Fibrosis Are Inadequate

Deanna M. Green; Kathryn A. Carson; Amanda Leonard; J. Erin Davis; Beryl J. Rosenstein; Pamela L. Zeitlin; Peter J. Mogayzel

OBJECTIVES To determine the prevalence of vitamin D deficiency (25-hydroxy vitamin D [25-OHD] levels in plasma <30 ng/mL) in pediatric patients with cystic fibrosis (CF), elucidate contributing factors for vitamin D deficiency, and determine the efficacy of ergocalciferol repletion strategies. STUDY DESIGN Retrospective chart review of 262 pediatric patients from January 2003 to December 2006 with linear and logistic regression analyses. RESULTS Vitamin D deficiency prevalence declined in the years studied from 86.5% to 46.2%. Patients >12 years old were more likely to have deficiency than patients <5 years old (odds ratio [OR], 3.44; 95% CI, 1.73-6.84). Levels obtained in spring and summer were less likely to be deficient compared with those obatained in fall (OR, 0.24; 95% CI, 0.10-0.61; and OR, 0.25; 95% CI, 0.11-0.61; respectively). Success of treatment with 50,000 IU of ergocalciferol once, twice, or 3 times weekly was 33%, 26%, and 43%, respectively. Ergocalciferol, when compared with no treatment, did not significantly increase the proportion of patients with follow-up levels > or =30 ng/mL (chi(2)P value = .80, .34, and .22, respectively). CONCLUSIONS The prevalence of vitamin D deficiency is high, but declined with time. Age, forced expiratory volume in 1 second, and season were associated with 25-OHD levels. Despite 33% of patients responding to 50 000 IU of ergocalciferol once a week, this recommendation does not adequately treat most patients with CF who have vitamin D deficiency.


Advanced Drug Delivery Reviews | 2002

Therapeutic approaches to repair defects in ΔF508 CFTR folding and cellular targeting

Kristina Powell; Pamela L. Zeitlin

The deltaF508 mutation in the cystic fibrosis transmembrane regulator (CFTR) gene is the most common mutation in CF. The mutant CFTR protein is defective with respect to multiple functions including cAMP-regulated chloride conductance, nucleotide transport, and regulatory actions on other ion channels. Since the deltaF508 protein is also temperature-sensitive and unstable during translation and folding in the endoplasmic reticulum (ER), most of the nascent chains are targeted for premature proteolysis from the ER. This paper focuses on the events that occur in the ER during folding and reviews potential targets for therapeutic intervention.

Collaboration


Dive into the Pamela L. Zeitlin's collaboration.

Top Co-Authors

Avatar

William B. Guggino

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Neeraj Vij

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Garry R. Cutting

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Harvey B. Pollard

Uniformed Services University of the Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Terence R. Flotte

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Barrie J. Carter

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Frank J. Accurso

University of Colorado Denver

View shared research outputs
Researchain Logo
Decentralizing Knowledge