Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pamela Magistrado is active.

Publication


Featured researches published by Pamela Magistrado.


Journal of Experimental Medicine | 2004

Evidence for the Involvement of VAR2CSA in Pregnancy-associated Malaria

Ali Salanti; Madeleine Dahlbäck; Louise Turner; Morten A. Nielsen; Lea Barfod; Pamela Magistrado; Anja T. R. Jensen; Thomas Lavstsen; Michael F. Ofori; Kevin Marsh; Lars Hviid; Thor G. Theander

In Plasmodium falciparum–endemic areas, pregnancy-associated malaria (PAM) is an important health problem. The condition is precipitated by accumulation of parasite-infected erythrocytes (IEs) in the placenta, and this process is mediated by parasite-encoded variant surface antigens (VSA) binding to chondroitin sulfate A (CSA). Parasites causing PAM express unique VSA types, VSAPAM, which can be serologically classified as sex specific and parity dependent. It is sex specific because men from malaria-endemic areas do not develop VSAPAM antibodies; it is parity dependent because women acquire anti-VSAPAM immunoglobulin (Ig) G as a function of parity. Previously, it was shown that transcription of var2csa is up-regulated in placental parasites and parasites selected for CSA binding. Here, we show the following: (a) that VAR2CSA is expressed on the surface of CSA-selected IEs; (b) that VAR2CSA is recognized by endemic plasma in a sex-specific and parity-dependent manner; (c) that high anti-VAR2CSA IgG levels can be found in pregnant women from both West and East Africa; and (d) that women with high plasma levels of anti-VAR2CSA IgG give birth to markedly heavier babies and have a much lower risk of delivering low birth weight children than women with low levels.


Journal of Experimental Medicine | 2004

Plasmodium falciparum Associated with Severe Childhood Malaria Preferentially Expresses PfEMP1 Encoded by Group A var Genes

Anja T. R. Jensen; Pamela Magistrado; Sarah Sharp; Louise Joergensen; Thomas Lavstsen; Antonella Chiucchiuini; Ali Salanti; Lasse S. Vestergaard; John Lusingu; Rob Hermsen; Robert W. Sauerwein; Jesper Christensen; Morten A. Nielsen; Lars Hviid; Colin J. Sutherland; Trine Staalsoe; Thor G. Theander

Parasite-encoded variant surface antigens (VSAs) like the var gene–encoded Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family are responsible for antigenic variation and infected red blood cell (RBC) cytoadhesion in P. falciparum malaria. Parasites causing severe malaria in nonimmune patients tend to express a restricted subset of VSA (VSASM) that differs from VSA associated with uncomplicated malaria and asymptomatic infection (VSAUM). We compared var gene transcription in unselected P. falciparum clone 3D7 expressing VSAUM to in vitro–selected sublines expressing VSASM to identify PfEMP1 responsible for the VSASM phenotype. Expression of VSASM was accompanied by up-regulation of Group A var genes. The most prominently up-regulated Group A gene (PFD1235w/MAL7P1.1) was translated into a protein expressed on the infected RBC surface. The proteins encoded by Group A var genes, such as PFD1235w/MAL7P1.1, appear to be involved in the pathogenesis of severe disease and are thus attractive candidates for a vaccine against life-threatening P. falciparum malaria.


Nature | 2013

Severe malaria is associated with parasite binding to endothelial protein C receptor

Louise Turner; Thomas Lavstsen; Sanne S. Berger; Christian W. Wang; Jens Petersen; Marion Avril; Andrew J. Brazier; Jim Freeth; Jakob S. Jespersen; Morten A. Nielsen; Pamela Magistrado; John Lusingu; Joseph D. Smith; Matthew K. Higgins; Thor G. Theander

Sequestration of Plasmodium falciparum-infected erythrocytes in host blood vessels is a key triggering event in the pathogenesis of severe childhood malaria, which is responsible for about one million deaths every year. Sequestration is mediated by specific interactions between members of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family and receptors on the endothelial lining. Severe childhood malaria is associated with expression of specific PfEMP1 subtypes containing domain cassettes (DCs) 8 and 13 (ref. 3), but the endothelial receptor for parasites expressing these proteins was unknown. Here we identify endothelial protein C receptor (EPCR), which mediates the cytoprotective effects of activated protein C, as the endothelial receptor for DC8 and DC13 PfEMP1. We show that EPCR binding is mediated through the amino-terminal cysteine-rich interdomain region (CIDRα1) of DC8 and group A PfEMP1 subfamilies, and that CIDRα1 interferes with protein C binding to EPCR. This PfEMP1 adhesive property links P. falciparum cytoadhesion to a host receptor involved in anticoagulation and endothelial cytoprotective pathways, and has implications for understanding malaria pathology and the development of new malaria interventions.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Plasmodium falciparum erythrocyte membrane protein 1 domain cassettes 8 and 13 are associated with severe malaria in children

Thomas Lavstsen; Louise Turner; Fredy Saguti; Pamela Magistrado; Thomas Salhøj Rask; Jakob S. Jespersen; Christian W. Wang; Sanne S. Berger; Vito Baraka; Andrea M. Marquard; Andaine Seguin-Orlando; M. Thomas P. Gilbert; John Lusingu; Thor G. Theander

The clinical outcome of Plasmodium falciparum infections ranges from asymptomatic parasitemia to severe malaria syndromes associated with high mortality. The virulence of P. falciparum infections is associated with the type of P. falciparum erythrocyte membrane protein 1 (PfEMP1) expressed on the surface of infected erythrocytes to anchor these to the vascular lining. Although var2csa, the var gene encoding the PfEMP1 associated with placental malaria, was discovered in 2003, the identification of the var/PfEMP1 variants associated with severe malaria in children has remained elusive. To identify var/PfEMP1 variants associated with severe disease outcome, we compared var transcript levels in parasites from 88 children with severe malaria and 40 children admitted to the hospital with uncomplicated malaria. Transcript analysis was performed by RT-quantitative PCR using a set of 42 primer pairs amplifying var subtype-specific loci covering most var/PfEMP1 subtypes. In addition, we characterized the near-full-length sequence of the most prominently expressed var genes in three patients diagnosed with severe anemia and/or cerebral malaria. The combined analysis showed that severe malaria syndromes, including severe anemia and cerebral malaria, are associated with high transcript levels of PfEMP1 domain cassette 8-encoding var genes. Transcript levels of group A var genes, including genes encoding domain cassette 13, were also significantly higher in patients with severe syndromes compared with those with uncomplicated malaria. This study specifies the var/PfEMP1 types expressed in severe malaria in children, and thereby provides unique targets for future efforts to prevent and treat severe malaria infections.


Malaria Journal | 2005

Expression of Plasmodium falciparum erythrocyte membrane protein 1 in experimentally infected humans

Thomas Lavstsen; Pamela Magistrado; Cornelus C. Hermsen; Ali Salanti; Anja T. R. Jensen; Robert W. Sauerwein; Lars Hviid; Thor G. Theander; Trine Staalsoe

BackgroundParasites causing severe malaria in non-immune patients express a restricted subset of variant surface antigens (VSA), which are better recognized by immune sera than VSA expressed during non-severe disease in semi-immune individuals. The most prominent VSA are the var gene-encoded Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family, which is expressed on the surface of infected erythrocytes where it mediates binding to endothelial receptors. Thus, severe malaria may be caused by parasites expressing PfEMP1 variants that afford parasites optimal sequestration in immunologically naïve individuals and high effective multiplication rates.Methodsvar gene transcription was analysed using real time PCR and PfEMP1 expression by western blots as well as immune plasma recognition of parasite cultures established from non-immune volunteers shortly after infection with NF54 sporozoites.ResultsIn cultures representing the first generation of parasites after hepatic release, all var genes were transcribed, but GroupA var genes were transcribed at the lowest levels. In cultures established from second or third generation blood stage parasites of volunteers with high in vivo parasite multiplication rates, the var gene transcription pattern differed markedly from the transcription pattern of the cultures representing first generation parasites. This indicated that parasites expressing specific var genes, mainly belonging to group A and B, had expanded more effectively in vivo compared to parasites expressing other var genes. The differential expression of PfEMP1 was confirmed at the protein level by immunoblot analysis. In addition, serological typing showed that immune sera more often recognized second and third generation parasites than first generation parasites.ConclusionIn conclusion, the results presented here support the hypothesis that parasites causing severe malaria express a subset of PfEMP1, which bestows high parasite growth rates in individuals with limited pre-existing immunity.


PLOS ONE | 2009

Multiple var2csa-type PfEMP1 genes located at different chromosomal loci occur in many Plasmodium falciparum isolates

Adam F. Sander; Ali Salanti; Thomas Lavstsen; Morten A. Nielsen; Pamela Magistrado; John Lusingu; Nicaise Tuikue Ndam; David E. Arnot

Background The var2csa gene encodes a Plasmodium falciparum adhesion receptor which binds chondroitin sulfate A (CSA). This var gene is more conserved than other PfEMP1/var genes and is found in all P. falciparum isolates. In isolates 3D7, FCR3/It4 and HB3, var2csa is transcribed from a sub-telomeric position on the left arm of chromosome 12, but it is not known if this location is conserved in all parasites. Genome sequencing indicates that the var2csa gene is duplicated in HB3, but whether this is true in natural populations is uncertain. Methodology/Principal Findings To assess global variation in the VAR2CSA protein, sequence variation in the DBL2X region of var2csa genes in 54 P.falciparum samples was analyzed. Chromosome mapping of var2csa loci was carried out and a quantitative PCR assay was developed to estimate the number of var2csa genes in P.falciparum isolates from the placenta of pregnant women and from the peripheral circulation of other malaria patients. Sequence analysis, gene mapping and copy number quantitation in P.falciparum isolates indicate that there are at least two loci and that both var2csa-like genes can be transcribed. All VAR2CSA DBL2X domains fall into one of two distinct phylogenetic groups possessing one or the other variant of a large (∼26 amino acid) dimorphic motif, but whether either motif variant is linked to a specific locus is not known. Conclusions/Significance Two or more related but distinct var2csa-type PfEMP1/var genes exist in many P. falciparum isolates. One gene is on chromosome 12 but additional var2csa-type genes are on different chromosomes in different isolates. Multiplicity of var2csa genes appears more common in infected placentae than in samples from non-pregnant donors indicating a possible advantage of this genotype in pregnancy associated malaria.


Malaria Journal | 2011

Accuracy of malaria rapid diagnostic tests in community studies and their impact on treatment of malaria in an area with declining malaria burden in north-eastern Tanzania

Deus S. Ishengoma; Filbert Francis; Bruno Mmbando; John Lusingu; Pamela Magistrado; Michael Alifrangis; Thor G. Theander; Ib C. Bygbjerg; Martha M. Lemnge

BackgroundDespite some problems related to accuracy and applicability of malaria rapid diagnostic tests (RDTs), they are currently the best option in areas with limited laboratory services for improving case management through parasitological diagnosis and reducing over-treatment. This study was conducted in areas with declining malaria burden to assess; 1) the accuracy of RDTs when used at different community settings, 2) the impact of using RDTs on anti-malarial dispensing by community-owned resource persons (CORPs) and 3) adherence of CORPs to treatment guidelines by providing treatment based on RDT results.MethodsData were obtained from: 1) a longitudinal study of passive case detection of fevers using CORPs in six villages in Korogwe; and 2) cross-sectional surveys (CSS) in six villages of Korogwe and Muheza districts, north-eastern, Tanzania. Performance of RDTs was compared with microscopy as a gold standard, and factors affecting their accuracy were explored using a multivariate logistic regression model.ResultsOverall sensitivity and specificity of RDTs in the longitudinal study (of 23,793 febrile cases; 18,154 with microscopy and RDTs results) were 88.6% and 88.2%, respectively. In the CSS, the sensitivity was significantly lower (63.4%; χ2 = 367.7, p < 0.001), while the specificity was significantly higher (94.3%; χ2 = 143.1, p < 0.001) when compared to the longitudinal study. As determinants of sensitivity of RDTs in both studies, parasite density of < 200 asexual parasites/μl was significantly associated with high risk of false negative RDTs (OR≥16.60, p < 0.001), while the risk of false negative test was significantly lower among cases with fever (axillary temperature ≥37.5°C) (OR ≤ 0.63, p ≤ 0.027). The risk of false positive RDT (as a determinant of specificity) was significantly higher in cases with fever compared to afebrile cases (OR≥2.40, p < 0.001). Using RDTs reduced anti-malarials dispensing from 98.9% to 32.1% in cases aged ≥5 years.ConclusionAlthough RDTs had low sensitivity and specificity, which varied widely depending on fever and parasite density, using RDTs reduced over-treatment with anti-malarials significantly. Thus, with declining malaria prevalence, RDTs will potentially identify majority of febrile cases with parasites and lead to improved management of malaria and non-malaria fevers.


The Journal of Infectious Diseases | 2008

VAR2CSA Expression on the Surface of Placenta-Derived Plasmodium falciparum-Infected Erythrocytes

Pamela Magistrado; Ali Salanti; Nicaise Tuikue Ndam; Steven B. Mwakalinga; Mafalda Resende; Madeleine Dahlbäck; Lars Hviid; John Lusingu; Thor G. Theander; Morten A. Nielsen

Malaria remains a major threat, in sub-Saharan Africa primarily, and the most deadly infections are those with Plasmodium falciparum. Pregnancy-associated malaria is a clinically important complication of infection; it results from a unique interaction between proteoglycans in the placental intervillous space and parasite antigens. Both placental and chondroitin sulphate A-selected parasites have high-level transcripts of a unique var gene named var2csa. However, VAR2CSA has not been consistently found by proteomic analysis of placental parasites. Contrary to this, we found VAR2CSA expressed on the surface of infected erythrocytes from placenta. Importantly, this was achieved with cross-reactive antibodies against VAR2CSA.


Emerging Infectious Diseases | 2013

Plasmodium falciparum mutant haplotype infection during pregnancy associated with reduced birthweight, Tanzania.

Daniel T. R. Minja; Christentze Schmiegelow; Bruno P. Mmbando; Stéphanie Boström; Mayke Oesterholt; Pamela Magistrado; Caroline Pehrson; Davis John; Ali Salanti; Adrian J. F. Luty; Martha M. Lemnge; Thor G. Theander; John Lusingu; Michael Alifrangis

Intermittent preventive treatment during pregnancy with sulfadoxine–pyrimethamine (IPTp-SP) is a key strategy in the control of pregnancy-associated malaria. However, this strategy is compromised by widespread drug resistance from single-nucleotide polymorphisms in the Plasmodium falciparum dihydrofolate reductase and dihydropteroate synthetase genes. During September 2008–October 2010, we monitored a cohort of 924 pregnant women in an area of Tanzania with declining malaria transmission. P. falciparum parasites were genotyped, and the effect of infecting haplotypes on birthweight was assessed. Of the genotyped parasites, 9.3%, 46.3%, and 44.4% had quadruple or less, quintuple, and sextuple mutated haplotypes, respectively. Mutant haplotypes were unrelated to SP doses. Compared with infections with the less-mutated haplotypes, infections with the sextuple haplotype mutation were associated with lower (359 g) birthweights. Continued use of the suboptimal IPTp-SP regimen should be reevaluated, and alternative strategies (e.g., intermittent screening and treatment or intermittent treatment with safe and effective alternative drugs) should be evaluated.


Journal of Immunology | 2010

Chondroitin Sulfate A-Adhering Plasmodium falciparum-Infected Erythrocytes Express Functionally Important Antibody Epitopes Shared by Multiple Variants

Lea Barfod; Tina Dobrilovic; Pamela Magistrado; Pongsak Khunrae; Firmine Viwami; Jonas Bruun; Madeleine Dahlbäck; Nadia L. Bernasconi; Michal Fried; Davis John; Patrick E. Duffy; Ali Salanti; Antonio Lanzavecchia; Chwee Teck Lim; Nicaise Tuikue Ndam; Matthew K. Higgins; Lars Hviid

Acquired protection from Plasmodium falciparum placental malaria, a major cause of maternal, fetal, and infant morbidity, is mediated by IgG specific for the P. falciparum erythrocyte membrane protein 1 variant VAR2CSA. This protein enables adhesion of P. falciparum-infected erythrocytes to chondroitin sulfate A in the intervillous space. Although interclonal variation of the var2csa gene is lower than that among var genes in general, VAR2CSA-specific Abs appear to target mainly polymorphic epitopes. This has raised doubts about the feasibility of VAR2CSA-based vaccines. We used eight human monoclonal IgG Abs from affinity-matured memory B cells of P. falciparum-exposed women to study interclonal variation and functional importance of Ab epitopes among placental and peripheral parasites from East and West Africa. Most placental P. falciparum isolates were labeled by several mAbs, whereas peripheral isolates from children were essentially nonreactive. The mAb reactivity of peripheral isolates from pregnant women indicated that some were placental, whereas others had alternative sequestration foci. Most of the mAbs were comparable in their reactivity with bound infected erythrocytes (IEs) and recombinant VAR2CSA and interfered with IE and/or VAR2CSA binding to chondroitin sulfate A. Pair-wise mAb combinations were more inhibitory than single mAbs, and all of the mAbs together was the most efficient combination. Each mAb could opsonize IEs for phagocytosis, and a combination of the eight mAbs caused phagocytosis similar to that of plasma IgG-opsonized IEs. We conclude that functionally important Ab epitopes are shared by the majority of polymorphic VAR2CSA variants, which supports the feasibility of VAR2CSA-based vaccines against placental malaria.

Collaboration


Dive into the Pamela Magistrado's collaboration.

Top Co-Authors

Avatar

Thor G. Theander

Copenhagen University Hospital

View shared research outputs
Top Co-Authors

Avatar

Ali Salanti

Copenhagen University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lars Hviid

Copenhagen University Hospital

View shared research outputs
Top Co-Authors

Avatar

Louise Turner

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Morten A. Nielsen

Copenhagen University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christentze Schmiegelow

Copenhagen University Hospital

View shared research outputs
Top Co-Authors

Avatar

Madeleine Dahlbäck

Copenhagen University Hospital

View shared research outputs
Top Co-Authors

Avatar

Mayke Oesterholt

Radboud University Nijmegen Medical Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge