Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pamela Nabeta is active.

Publication


Featured researches published by Pamela Nabeta.


The New England Journal of Medicine | 2010

Rapid Molecular Detection of Tuberculosis and Rifampin Resistance

Catharina Boehme; Pamela Nabeta; Doris Hillemann; Mark P. Nicol; Shubhada Shenai; Fiorella Krapp; Jenny Allen; Rasim Tahirli; Robert Blakemore; Roxana Rustomjee; Ana Milovic; Martin Jones; David H. Persing; Sabine Ruesch-Gerdes; Eduardo Gotuzzo; Camilla Rodrigues; David Alland; Mark D. Perkins

BACKGROUNDnGlobal control of tuberculosis is hampered by slow, insensitive diagnostic methods, particularly for the detection of drug-resistant forms and in patients with human immunodeficiency virus infection. Early detection is essential to reduce the death rate and interrupt transmission, but the complexity and infrastructure needs of sensitive methods limit their accessibility and effect.nnnMETHODSnWe assessed the performance of Xpert MTB/RIF, an automated molecular test for Mycobacterium tuberculosis (MTB) and resistance to rifampin (RIF), with fully integrated sample processing in 1730 patients with suspected drug-sensitive or multidrug-resistant pulmonary tuberculosis. Eligible patients in Peru, Azerbaijan, South Africa, and India provided three sputum specimens each. Two specimens were processed with N-acetyl-L-cysteine and sodium hydroxide before microscopy, solid and liquid culture, and the MTB/RIF test, and one specimen was used for direct testing with microscopy and the MTB/RIF test.nnnRESULTSnAmong culture-positive patients, a single, direct MTB/RIF test identified 551 of 561 patients with smear-positive tuberculosis (98.2%) and 124 of 171 with smear-negative tuberculosis (72.5%). The test was specific in 604 of 609 patients without tuberculosis (99.2%). Among patients with smear-negative, culture-positive tuberculosis, the addition of a second MTB/RIF test increased sensitivity by 12.6 percentage points and a third by 5.1 percentage points, to a total of 90.2%. As compared with phenotypic drug-susceptibility testing, MTB/RIF testing correctly identified 200 of 205 patients (97.6%) with rifampin-resistant bacteria and 504 of 514 (98.1%) with rifampin-sensitive bacteria. Sequencing resolved all but two cases in favor of the MTB/RIF assay.nnnCONCLUSIONSnThe MTB/RIF test provided sensitive detection of tuberculosis and rifampin resistance directly from untreated sputum in less than 2 hours with minimal hands-on time. (Funded by the Foundation for Innovative New Diagnostics.)


The Lancet | 2011

Feasibility, diagnostic accuracy, and effectiveness of decentralised use of the Xpert MTB/RIF test for diagnosis of tuberculosis and multidrug resistance: a multicentre implementation study

Catharina Boehme; Mark P. Nicol; Pamela Nabeta; Joy Sarojini Michael; Eduardo Gotuzzo; Rasim Tahirli; Ma Tarcela Gler; Robert Blakemore; William Worodria; Christen Gray; Laurence Huang; Tatiana Caceres; Rafail Mehdiyev; Lawrence W. Raymond; Andrew Whitelaw; Kalaiselvan Sagadevan; Heather Alexander; Heidi Albert; Frank Cobelens; Helen Cox; David Alland; Mark D. Perkins

Summary Background The Xpert MTB/RIF test (Cepheid, Sunnyvale, CA, USA) can detect tuberculosis and its multidrug-resistant form with very high sensitivity and specificity in controlled studies, but no performance data exist from district and subdistrict health facilities in tuberculosis-endemic countries. We aimed to assess operational feasibility, accuracy, and effectiveness of implementation in such settings. Methods We assessed adults (≥18 years) with suspected tuberculosis or multidrug-resistant tuberculosis consecutively presenting with cough lasting at least 2 weeks to urban health centres in South Africa, Peru, and India, drug-resistance screening facilities in Azerbaijan and the Philippines, and an emergency room in Uganda. Patients were excluded from the main analyses if their second sputum sample was collected more than 1 week after the first sample, or if no valid reference standard or MTB/RIF test was available. We compared one-off direct MTB/RIF testing in nine microscopy laboratories adjacent to study sites with 2–3 sputum smears and 1–3 cultures, dependent on site, and drug-susceptibility testing. We assessed indicators of robustness including indeterminate rate and between-site performance, and compared time to detection, reporting, and treatment, and patient dropouts for the techniques used. Findings We enrolled 6648 participants between Aug 11, 2009, and June 26, 2010. One-off MTB/RIF testing detected 933 (90·3%) of 1033 culture-confirmed cases of tuberculosis, compared with 699 (67·1%) of 1041 for microscopy. MTB/RIF test sensitivity was 76·9% in smear-negative, culture-positive patients (296 of 385 samples), and 99·0% specific (2846 of 2876 non-tuberculosis samples). MTB/RIF test sensitivity for rifampicin resistance was 94·4% (236 of 250) and specificity was 98·3% (796 of 810). Unlike microscopy, MTB/RIF test sensitivity was not significantly lower in patients with HIV co-infection. Median time to detection of tuberculosis for the MTB/RIF test was 0 days (IQR 0–1), compared with 1 day (0–1) for microscopy, 30 days (23–43) for solid culture, and 16 days (13–21) for liquid culture. Median time to detection of resistance was 20 days (10–26) for line-probe assay and 106 days (30–124) for conventional drug-susceptibility testing. Use of the MTB/RIF test reduced median time to treatment for smear-negative tuberculosis from 56 days (39–81) to 5 days (2–8). The indeterminate rate of MTB/RIF testing was 2·4% (126 of 5321 samples) compared with 4·6% (441 of 9690) for cultures. Interpretation The MTB/RIF test can effectively be used in low-resource settings to simplify patients access to early and accurate diagnosis, thereby potentially decreasing morbidity associated with diagnostic delay, dropout and mistreatment. Funding Foundation for Innovative New Diagnostics, Bill & Melinda Gates Foundation, European and Developing Countries Clinical Trials Partnership (TA2007.40200.009), Wellcome Trust (085251/B/08/Z), and UK Department for International Development.


Journal of Clinical Microbiology | 2007

Operational Feasibility of Using Loop-Mediated Isothermal Amplification for Diagnosis of Pulmonary Tuberculosis in Microscopy Centers of Developing Countries

Catharina Boehme; Pamela Nabeta; German Henostroza; Rubhana Raqib; Zeaur Rahim; Martina Gerhardt; Erica Sanga; Michael Hoelscher; Tsugunori Notomi; Tetsu Hase; Mark D. Perkins

ABSTRACT The characteristics of loop-mediated isothermal amplification (LAMP) make it a promising platform for the molecular detection of tuberculosis (TB) in developing countries. Here, we report on the first clinical evaluation of LAMP for the detection of pulmonary TB in microscopy centers in Peru, Bangladesh, and Tanzania to determine its operational applicability in such settings. A prototype LAMP assay with simplified manual DNA extraction was evaluated for accuracy and ease of use. The sensitivity of LAMP in smear- and culture-positive sputum specimens was 97.7% (173/177 specimens; 95% confidence interval [CI], 95.5 to 99.9%), and the sensitivity in smear-negative, culture-positive specimens was 48.8% (21/43 specimens; CI, 33.9 to 63.7%). The specificity in culture-negative samples was 99% (500/505 specimens; CI, 98.1 to 99.9%). The average hands-on time for testing six samples and two controls was 54 min, similar to that of sputum smear microscopy. The optimal amplification time was 40 min. No indeterminate results were reported, and the interreader variability was 0.4%. Despite the use of a single room without biosafety cabinets for all procedures, no DNA contamination was observed. The assay was robust, with high end-point stability and low rates of test failure. Technicians with no prior molecular experience easily performed the assay after 1 week of training, and opportunities for further simplification of the assay were identified.


Journal of Clinical Microbiology | 2011

Xpert MTB/RIF: a New Pillar in Diagnosis of Extrapulmonary Tuberculosis?

Viral Vadwai; Catharina Boehme; Pamela Nabeta; Anjali Shetty; David Alland; Camilla Rodrigues

ABSTRACT Approximately 10 to 15% of tuberculosis (TB) cases in India are estimated to have extrapulmonary disease, and due to a lack of diagnostic means, they often remain untreated. The early detection of Mycobacterium tuberculosis and multidrug resistance is a priority in TB diagnosis to improve the successful treatment rate of TB and reduce transmission. The Xpert MTB/RIF (Xpert) test, recently endorsed by the World Health Organization for the detection of pulmonary TB, was evaluated to test its utility in 547 patients with suspected extrapulmonary tuberculosis. Five hundred forty-seven extrapulmonary specimens were split and processed simultaneously for both culture (solid and liquid) and Xpert testing. For culture, the sensitivity was low, 53% (150/283 specimens). Xpert sensitivity and specificity results were assessed in comparison to a composite reference standard made up of smear and culture results and clinical, radiological, and histological findings. The sensitivity of the Xpert assay was 81% (228/283 specimens) (64% [89/138] for smear-negative cases and 96% [139/145] for smear-positive cases), with a specificity of 99.6%. The sensitivity was found to be high for the majority of specimen types (63 to 100%) except for cerebrospinal fluid, the sensitivity of which was 29% (2/7 specimens). The Xpert test correctly identified 98% of phenotypic rifampin (RIF)-resistant cases and 94% of phenotypic RIF-susceptible cases. Sequencing of the 6 discrepant samples resolved 3 of them, resulting in an increased specificity of 98%. In conclusion, the results of this study suggest that the Xpert test also shows good potential for the diagnosis of extrapulmonary TB and that its ease of use makes it applicable for countries where TB is endemic.


American Journal of Respiratory and Critical Care Medicine | 2011

A Multisite Assessment of the Quantitative Capabilities of the Xpert MTB/RIF Assay

Robert Blakemore; Pamela Nabeta; Amy L. Davidow; Viral Vadwai; Rasim Tahirli; Vanisha Munsamy; Mark P. Nicol; Martin Jones; David H. Persing; Doris Hillemann; Sabine Ruesch-Gerdes; Felicity Leisegang; Carlos Zamudio; Camilla Rodrigues; Catharina Boehme; Mark D. Perkins; David Alland

RATIONALEnThe Xpert MTB/RIF is an automated molecular test for Mycobacterium tuberculosis that estimates bacterial burden by measuring the threshold-cycle (Ct) of its M. tuberculosis-specific real-time polymerase chain reaction. Bacterial burden is an important biomarker for disease severity, infection control risk, and response to therapy.nnnOBJECTIVESnEvaluate bacterial load quantitation by Xpert MTB/RIF compared with conventional quantitative methods.nnnMETHODSnXpert MTB/RIF results were compared with smear-microscopy, semiquantiative solid culture, and time-to-detection in liquid culture for 741 patients and 2,008 samples tested in a multisite clinical trial. An internal control real-time polymerase chain reaction was evaluated for its ability to identify inaccurate quantitative Xpert MTB/RIF results.nnnMEASUREMENTS AND MAIN RESULTSnAssays with an internal control Ct greater than 34 were likely to be inaccurately quantitated; this represented 15% of M. tuberculosis-positive tests. Excluding these, decreasing M. tuberculosis Ct was associated with increasing smear microscopy grade for smears of concentrated sputum pellets (r(s) = -0.77) and directly from sputum (r(s) =-0.71). A Ct cutoff of approximately 27.7 best predicted smear-positive status. The association between M. tuberculosis Ct and time-to-detection in liquid culture (r(s) = 0.68) and semiquantitative colony counts (r(s) = -0.56) was weaker than smear. Tests of paired same-patient sputum showed that high viscosity sputum samples contained ×32 more M. tuberculosis than nonviscous samples. Comparisons between the grade of the acid-fast bacilli smear and Xpert MTB/RIF quantitative data across study sites enabled us to identify a site outlier in microscopy.nnnCONCLUSIONSnXpert MTB/RIF quantitation offers a new, standardized approach to measuring bacterial burden in the sputum of patients with tuberculosis.


PLOS ONE | 2012

Impact of Xpert MTB/RIF testing on tuberculosis management and outcomes in hospitalized patients in Uganda.

Christina Yoon; Adithya Cattamanchi; J. Lucian Davis; William Worodria; Saskia den Boon; Nelson Kalema; Winceslaus Katagira; Sylvia Kaswabuli; Cecily Miller; Alfred Andama; Heidi Albert; Pamela Nabeta; Christen Gray; Irene Ayakaka; Laurence Huang

Rationale The clinical impact of Xpert MTB/RIF for tuberculosis (TB) diagnosis in high HIV-prevalence settings is unknown. Objective To determine the diagnostic accuracy and impact of Xpert MTB/RIF among high-risk TB suspects. Methods We prospectively enrolled consecutive, hospitalized, Ugandan TB suspects in two phases: baseline phase in which Xpert MTB/RIF results were not reported to clinicians and an implementation phase in which results were reported. We determined the diagnostic accuracy of Xpert MTB/RIF in reference to culture (solid and liquid) and compared patient outcomes by study phase. Results 477 patients were included (baseline phase 287, implementation phase 190). Xpert MTB/RIF had high sensitivity (187/237, 79%, 95% CI: 73–84%) and specificity (190/199, 96%, 95% CI: 92–98%) for culture-positive TB overall, but sensitivity was lower (34/81, 42%, 95% CI: 31–54%) among smear-negative TB cases. Xpert MTB/RIF reduced median days-to-TB detection for all TB cases (1 [IQR 0–26] vs. 0 [IQR 0–1], p<0.001), and for smear-negative TB (35 [IQR 22–55] vs. 22 [IQR 0–33], pu200a=u200a0.001). However, median days-to-TB treatment was similar for all TB cases (1 [IQR 0–5] vs. 0 [IQR 0–2], pu200a=u200a0.06) and for smear-negative TB (7 [IQR 3–53] vs. 6 [IQR 1–61], pu200a=u200a0.78). Two-month mortality was also similar between study phases among 252 TB cases (17% vs. 14%, difference +3%, 95% CI: −21% to +27%, pu200a=u200a0.80), and among 87 smear-negative TB cases (28% vs. 22%, difference +6%, 95% CI: −34 to +46%, pu200a=u200a0.77). Conclusions Xpert MTB/RIF facilitated more accurate and earlier TB diagnosis, leading to a higher proportion of TB suspects with a confirmed TB diagnosis prior to hospital discharge in a high HIV/low MDR TB prevalence setting. However, our study did not detect a decrease in two-month mortality following implementation of Xpert MTB/RIF possibly because of insufficient powering, differences in empiric TB treatment rates, and disease severity between study phases.


Mbio | 2017

The new Xpert MTB/RIF ultra: Improving detection of Mycobacterium tuberculosis and resistance to Rifampin in an assay suitable for point-of-care testing

Soumitesh Chakravorty; Ann Marie Simmons; Mazhgan Rowneki; Heta Parmar; Yuan Cao; Jamie Ryan; Padmapriya P. Banada; Srinidhi Deshpande; Shubhada Shenai; Jennifer Glass; Barry Krieswirth; Samuel G. Schumacher; Pamela Nabeta; Nestani Tukvadze; Camilla Rodrigues; Alena Skrahina; Elisa Tagliani; Daniela Maria Cirillo; Amy L. Davidow; Claudia M. Denkinger; David H. Persing; Robert Kwiatkowski; Martin Jones; David Alland

ABSTRACT The Xpert MTB/RIF assay (Xpert) is a rapid test for tuberculosis (TB) and rifampin resistance (RIF-R) suitable for point-of-care testing. However, it has decreased sensitivity in smear-negative sputum, and false identification of RIF-R occasionally occurs. We developed the Xpert MTB/RIF Ultra assay (Ultra) to improve performance. Ultra and Xpert limits of detection (LOD), dynamic ranges, and RIF-R rpoB mutation detection were tested on Mycobacterium tuberculosis DNA or sputum samples spiked with known numbers of M. tuberculosis H37Rv or Mycobacterium bovis BCG CFU. Frozen and prospectively collected clinical samples from patients suspected of having TB, with and without culture-confirmed TB, were also tested. For M. tuberculosis H37Rv, the LOD was 15.6 CFU/ml of sputum for Ultra versus 112.6 CFU/ml of sputum for Xpert, and for M. bovis BCG, it was 143.4 CFU/ml of sputum for Ultra versus 344 CFU/ml of sputum for Xpert. Ultra resulted in no false-positive RIF-R specimens, while Xpert resulted in two false-positive RIF-R specimens. All RIF-R-associated M. tuberculosis rpoB mutations tested were identified by Ultra. Testing on clinical sputum samples, Ultra versus Xpert, resulted in an overall sensitivity of 87.5% (95% confidence interval [CI], 82.1, 91.7) versus 81.0% (95% CI, 74.9, 86.2) and a sensitivity on sputum smear-negative samples of 78.9% (95% CI, 70.0, 86.1) versus 66.1% (95% CI, 56.4, 74.9). Both tests had a specificity of 98.7% (95% CI, 93.0, 100), and both had comparable accuracies for detection of RIF-R in these samples. Ultra should significantly improve TB detection, especially in patients with paucibacillary disease, and may provide more-reliable RIF-R detection. IMPORTANCE The Xpert MTB/RIF assay (Xpert), the first point-of-care assay for tuberculosis (TB), was endorsed by the World Health Organization in December 2010. Since then, 23 million Xpert tests have been procured in 130 countries. Although Xpert showed high overall sensitivity and specificity with pulmonary samples, its sensitivity has been lower with smear-negative pulmonary samples and extrapulmonary samples. In addition, the prediction of rifampin resistance (RIF-R) in paucibacillary samples and for a few rpoB mutations has resulted in both false-positive and false-negative results. The present study is the first demonstration of the design features and operational characteristics of an improved Xpert Ultra assay. This study also shows that the Ultra format overcomes many of the known shortcomings of Xpert. The new assay should significantly improve TB detection, especially in patients with paucibacillary disease, and provide more-reliable detection of RIF-R. IMPORTANCE The Xpert MTB/RIF assay (Xpert), the first point-of-care assay for tuberculosis (TB), was endorsed by the World Health Organization in December 2010. Since then, 23 million Xpert tests have been procured in 130 countries. Although Xpert showed high overall sensitivity and specificity with pulmonary samples, its sensitivity has been lower with smear-negative pulmonary samples and extrapulmonary samples. In addition, the prediction of rifampin resistance (RIF-R) in paucibacillary samples and for a few rpoB mutations has resulted in both false-positive and false-negative results. The present study is the first demonstration of the design features and operational characteristics of an improved Xpert Ultra assay. This study also shows that the Ultra format overcomes many of the known shortcomings of Xpert. The new assay should significantly improve TB detection, especially in patients with paucibacillary disease, and provide more-reliable detection of RIF-R.


PLOS ONE | 2012

A diagnostic accuracy study of Xpert®MTB/RIF in HIV-positive patients with high clinical suspicion of pulmonary tuberculosis in Lima, Peru.

Gabriela Carriquiry; Larissa Otero; Elsa González-Lagos; Carlos Zamudio; Eduardo Sanchez; Pamela Nabeta; Miguel Campos; Juan Echevarría; Carlos Seas; Eduardo Gotuzzo

Background Diagnosis of pulmonary tuberculosis (TB) among human immunodeficiency virus (HIV) patients remains complex and demands easy to perform and accurate tests. Xpert®MTB/RIF (MTB/RIF) is a molecular TB diagnostic test which is rapid and convenient; the test requires minimal human resources and reports results within two hours. The majority of performance studies of MTB/RIF have been performed in high HIV burden settings, thus TB diagnostic studies among HIV patients in low HIV prevalence settings such as Peru are still needed. Methodology/Principal Findings From April 2010 to May 2011, HIV-positive patients with high clinical suspicion of TB were enrolled from two tertiary hospitals in Lima, Peru. Detection of TB by MTB/RIF was compared to a composite reference standard Löwenstein-Jensen (LJ) and liquid culture. Detection of rifampicin resistance was compared to the LJ proportion method. We included 131 patients, the median CD4 cell count was 154.5 cells/mm3 and 45 (34.4%) had TB. For TB detection among HIV patients, sensitivity of MTB/RIF was 97.8% (95% CI 88.4–99.6) (44/45); specificity was 97.7% (95% CI 91.9–99.4) (84/86); the positive predictive value was 95.7% (95% CI 85.5–98.8) (44/46); and the negative predictive value, 98.8% (95% CI 93.6–99.8) (84/85). MTB/RIF detected 13/14 smear-negative TB cases, outperforming smear microscopy [97.8% (44/45) vs. 68.9% (31/45); pu200a=u200a0.0002]. For rifampicin resistance detection, sensitivity of MTB/RIF was 100% (95% CI 61.0–100.0) (6/6); specificity was 91.0% (95% CI 76.4–96.9) (30/33); the positive predictive value was 66.7% (95% CI 35.4–87.9) (6/9); and the negative predictive value was 100% (95% CI 88.7 –100.0) (30/30). Conclusions/Significance In HIV patients in our population with a high clinical suspicion of TB, MTB/RIF performed well for TB diagnosis and outperformed smear microscopy.


Journal of Clinical Microbiology | 2016

Feasibility and Operational Performance of Tuberculosis Detection by Loop-Mediated Isothermal Amplification Platform in Decentralized Settings: Results from a Multicenter Study

Christen Gray; Achilles Katamba; Pratibha Narang; Jorge Giraldo; Carlos Zamudio; Moses Joloba; Rahul Narang; C. N. Paramasivan; Doris Hillemann; Pamela Nabeta; Danielle Amisano; David Alland; Frank Cobelens; Catharina Boehme

ABSTRACT Currently available nucleic acid amplification platforms for tuberculosis (TB) detection are not designed to be simple or inexpensive enough to implement in decentralized settings in countries with a high burden of disease. The loop-mediated isothermal amplification platform (LAMP) may change this. We conducted a study in adults with symptoms suggestive of TB in India, Uganda, and Peru to establish the feasibility of using TB-LAMP (Eiken Chemical Co.) in microscopy laboratories compared with using smear microscopy against a reference standard of solid and liquid cultures. Operational characteristics were evaluated as well. A total of 1,777 participants met the eligibility criteria and were included for analysis. Overall, TB-LAMP sensitivities among culture-positive samples were 97.2% (243/250; 95% confidence interval [CI], 94.3% to 98.2%) and 62.0% (88/142; 95% CI, 53.5% to 70.0%) for smear-positive and smear-negative TB, respectively, but varied widely by country and operator. Specificities ranged from 94.5% (446/472; 95% CI, 92.0% to 96.4%) to 98.0% (350/357; 95% CI, 96.0% to 99.2%) by country. A root cause analysis identified high temperatures, high humidity, and/or low reaction volumes as possible causes for false-positive results, as they may result in nonspecific amplification. The study was repeated in India with training focused on vulnerable steps and an updated protocol; 580 participants were included for analysis. Specificity in the repeat trial was 96.6% (515/533; 95% CI, 94.7% to 97.9%). To achieve acceptable performance of LAMP at the microscopy center level, significant training and infrastructure requirements are necessary.


BMC Infectious Diseases | 2016

Performance of the G4 Xpert ® MTB/RIF assay for the detection of Mycobacterium tuberculosis and rifampin resistance: a retrospective case-control study of analytical and clinical samples from high- and low-tuberculosis prevalence settings

Nila J. Dharan; Robert Blakemore; Alexander Sloutsky; Devinder Kaur; Richard Alexander; Minoo Ghajar; Kimberlee A. Musser; Vincent E. Escuyer; Marie-Claire Rowlinson; Susanne Crowe; Rafael Laniado-Laborin; Eloise Valli; Pamela Nabeta; Pamela Johnson; David Alland

BackgroundThe Xpert® MTB/RIF (Xpert) assay is a rapid PCR-based assay for the detection of Mycobacterium tuberculosis complex DNA (MTBc) and mutations associated with rifampin resistance (RIF). An updated version introduced in 2011, the G4 Xpert, included modifications to probe B and updated analytic software.MethodsAn analytical study was performed to assess Xpert detection of mutations associated with rifampin resistance in rifampin-susceptible and -resistant isolates. A clinical study was performed in which specimens from US and non-US persons suspected of tuberculosis (TB) were tested to determine Xpert performance characteristics. All specimens underwent smear microscopy, mycobacterial culture, conventional drug-susceptibility testing and Xpert testing; DNA from isolates with discordant rifampin resistance results was sequenced.ResultsAmong 191 laboratory-prepared isolates in the analytical study, Xpert sensitivity for detection of rifampin resistance associated mutations was 97.7% and specificity was 90.8%, which increased to 99.0% after DNA sequencing analysis of the discordant samples. Of the 1,096 subjects in the four clinical studies, 49% were from the US. Overall, Xpert detected MTBc in 439 of 468 culture-positive specimens for a sensitivity of 93.8% (95% confidence interval [CI]: 91.2%–95.7%) and did not detect MTBc in 620 of 628 culture-negative specimens for a specificity of 98.7% (95% CI: 97.5%–99.4%). Sensitivity was 99.7% among smear-positive cases, and 76.1% among smear-negative cases. Non-determinate MTBc detection and false-positive RIF resistance results were low (1.2 and 0.9%, respectively).ConclusionsThe updated Xpert assay retained the high sensitivity and specificity of the previous assay versions and demonstrated low rates of non-determinate and RIF resistance false positive results.

Collaboration


Dive into the Pamela Nabeta's collaboration.

Top Co-Authors

Avatar

Catharina Boehme

Foundation for Innovative New Diagnostics

View shared research outputs
Top Co-Authors

Avatar

David Alland

Rutgers Biomedical and Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Mark D. Perkins

Foundation for Innovative New Diagnostics

View shared research outputs
Top Co-Authors

Avatar

Christen Gray

Foundation for Innovative New Diagnostics

View shared research outputs
Top Co-Authors

Avatar

Claudia M. Denkinger

Foundation for Innovative New Diagnostics

View shared research outputs
Top Co-Authors

Avatar

Doris Hillemann

Vietnam Academy of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Eloise Valli

Foundation for Innovative New Diagnostics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eduardo Gotuzzo

Instituto de Medicina Tropical Alexander von Humboldt

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge